Thermodynamics Study of Solvent Adsorption on Octadecyl-Modified Silica
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
25568463
PubMed Central
PMC4281355
DOI
10.1007/s10337-014-2788-4
PII: 2788
Knihovny.cz E-zdroje
- Klíčová slova
- Column liquid chromatography, Enthalpy, Entropy, Solvent adsorption, Temperature influence,
- Publikační typ
- časopisecké články MeSH
Elution and solvation processes in liquid chromatography may be controlled by temperature changes. In the case of solvent adsorption, the temperature influences the amount of adsorbed solvent as well as the enthalpy and entropy of the solvation process. In this work, the thermodynamic parameters of organic solvents used as organic modifiers in the reversed-phase high-performance liquid chromatography elution process were determined. The changes of enthalpy and entropy in a series of chemically bonded stationary phases were measured to determine the effects of the temperature and surface coverage density of octadecyl ligands on the thermodynamic parameters of the solvation. For both the enthalpy and entropy a parabolic trend was observed with the minimum for medium surface coverage. The correlation of solvent adsorption values with the enthalpy of solvation was also investigated. The highest influence of the temperature on solvation process was observed for stationary phases with high surface coverage.
Zobrazit více v PubMed
Jaroniec M. Partition and displacement models in reversed-phase liquid chromatography with mixed eluents. J Chromatogr A. 1993;656:37–50. doi: 10.1016/0021-9673(93)80796-B. DOI
Slais K, Kreci M. Vacant peaks in liquid chromatography. J Chromatogr. 1974;91:161–166. doi: 10.1016/S0021-9673(01)97896-3. DOI
McCormick RM, Karger BL. Distribution phenomena of mobile-phase components and determination of dead volume in reversed-phase liquid chromatography. Anal Chem. 1980;52:2249–2257. doi: 10.1021/ac50064a005. DOI
Sandi A, Szepesy L. Evaluation and modulation of selectivity in reversed-phase high-performance liquid chromatography. J Chromatogr A. 1999;845:113–131. doi: 10.1016/S0021-9673(99)00361-1. DOI
Gritti F, Guiochon G. Influence of the pressure on the properties of chromatographic columns III. Retention volume of thiourea, hold-up volume, and compressibility of the C18-bonded layer. J Chromatogr A. 2005;1075:117–126. doi: 10.1016/j.chroma.2005.03.095. PubMed DOI
Buszewski B, Jaroniec M, Gilpin RK. Influence of eluent composition on retention and selectivity of alkylamide phases under reversed-phase conditions. J Chromatogr A. 1994;668:293–299. doi: 10.1016/0021-9673(94)80118-5. DOI
Cole LA, Dorsey JG. Temperature dependence of retention in reversed-phase liquid chromatography. 1 Stationary-phase considerations. Anal Chem. 1992;64:1317–1323. doi: 10.1021/ac00037a004. PubMed DOI
Horvath C, Melander W, Molnar I. Solvophobic interactions in liquid chromatography with nonpolar stationary phases. J Chromatogr. 1976;125:129–156. doi: 10.1016/S0021-9673(00)93816-0. DOI
Melander WR, Horvath C. In: High-performance liquid chromatography, advances and perspectives. Horvath C, editor. New York: Academic Press; 1980. pp. 113–319.
Dill KA. The mechanism of solute retention in reversed-phase liquid chromatography. J Phys Chem. 1987;91:1980–1988. doi: 10.1021/j100291a060. DOI
Cole LA, Dorsey JG, Dill KA. Temperature dependence of retention in reversed-phase liquid chromatography. 2 Mobile-phase considerations. Anal Chem. 1992;64:1324–1327. doi: 10.1021/ac00037a005. PubMed DOI
Gritti F, Kazakevich YV, Guiochon G. Effect of the surface coverage of endcapped C18-silica on the excess adsorption isotherms of commonly used organic solvents from water in reversed phase liquid chromatography. J Chromatogr A. 2007;1169:111–124. doi: 10.1016/j.chroma.2007.08.071. PubMed DOI
Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism. 1988;37:287–301. doi: 10.1016/0026-0495(88)90110-2. PubMed DOI
Vanhoenacker G, Sandra P. High temperature liquid chromatography and liquid chromatography–mass spectroscopy analysis of octylphenol ethoxylates on different stationary phases. J Chromatogr A. 2005;1082:193–202. doi: 10.1016/j.chroma.2005.05.050. PubMed DOI
Li J, Carr PW. Effect of temperature on the thermodynamic properties, kinetic performance, and stability of polybutadiene-coated zirconia. Anal Chem. 1997;69:837–843. doi: 10.1021/ac960854v. PubMed DOI
Takeuchi T, Watanabe Y, Ishii D. Role of column temperature in micro high performance liquid chromatography. J High Resolut Chromatogr. 1981;4:300–302. doi: 10.1002/jhrc.1240040614. DOI
Greibrokk T, Andersen T. High-temperature liquid chromatography. J Chromatogr A. 2003;1000:743–755. doi: 10.1016/S0021-9673(02)01963-5. PubMed DOI
Škeříková V, Jandera P. Effects of the operation parameters on hydrophilic interaction liquid chromatography separation of phenolic acids on zwitterionic monolithic capillary columns. J Chromatogr A. 2010;1217:7981–7989. doi: 10.1016/j.chroma.2010.07.061. PubMed DOI
Jandera P, Colin H, Guiochon G. Interaction indexes for prediction of retention in reversed-phase liquid chromatography. Anal Chem. 1982;435:435–441. doi: 10.1021/ac00240a020. DOI
Chester TL, Coym JW. Effect of phase ratio on van’t Hoff analysis in reversed-phase liquid chromatography, and phase-ratio-independent estimation of transfer enthalpy. J Chromatogr A. 2003;1003:101–111. doi: 10.1016/S0021-9673(03)00846-X. PubMed DOI
Vigh G, Varga-Puchony Z. Influence of temperature on the retention behaviour of members of homologous series in reversed-phase high-performance liquid chromatography. J Chromatogr A. 1980;196:1–9. doi: 10.1016/S0021-9673(00)80354-4. DOI
Melander W, Campbell DE, Horvath C. Enthalpy–entropy compensation in reversed-phase chromatography. J Chromatogr. 1978;158:215–225. doi: 10.1016/S0021-9673(00)89968-9. DOI
Kiridena W, Poole CF, Koziol WW. Reversed-phase chromatography on a polar endcapped octadecylsiloxane-bonded stationary phase with water as the mobile phase. Chromatographia. 2003;57:703–707. doi: 10.1007/BF02491754. DOI
Nahum A, Horvath C. Surface silanols in silica-bonded hydrocarbonaceous stationary phases: I. Dual retention mechanism in reversed-phase chromatography. J Chromatogr. 1981;203:53–63. doi: 10.1016/S0021-9673(00)80281-2. DOI
Morel D, Serpinet J. Influence of the liquid chromatographic mobile phase on the phase transitions of alkyl-bonded silicas studied by gas chromatography. J Chromatogr. 1981;214:202–208. doi: 10.1016/S0021-9673(00)98525-X. DOI
Hearn MTW, Zhao G. Investigations into the thermodynamics of polypeptide interaction with nonpolar ligands. Anal Chem. 1999;71:4874–4885. doi: 10.1021/ac990028x. PubMed DOI
Bell CM, Sander LC, Wise SA. Temperature dependence of carotenoids on C18, C30 and C34 bonded stationary phases. J Chromatogr A. 1997;757:29–39. doi: 10.1016/S0021-9673(96)00664-4. DOI
Guillarme D, Heinisch S, Rocca JL. Effect of temperature in reversed phase liquid chromatography. J Chromatogr A. 2004;1052:39–51. doi: 10.1016/j.chroma.2004.08.052. PubMed DOI
Cole LA, Dorsey JG. Reduction of reequilibration time following gradient elution reversed-phase liquid chromatography. Anal Chem. 1990;62:16–21. doi: 10.1021/ac00200a004. PubMed DOI
Tchapla A, Heron S, Colin H, Guiochon G. Role of temperature in the behavior of a homologous series in reversed phase liquid chromatography. Anal Chem. 1988;60:1443–1448. doi: 10.1021/ac00165a019. DOI
Bocian S, Vajda P, Felinger A, Buszewski B. Excess adsorption of commonly used organic solvents from water on nonend-capped C18-bonded phases in reversed-phase liquid chromatography. Anal Chem. 2009;81:6334–6346. doi: 10.1021/ac9005759. DOI
Kazakevich YV, McNair HM. Study of the excess adsorption of the eluent components on different reversed-phase adsorbents. J Chromatogr Sci. 1995;33:321–327. doi: 10.1093/chromsci/33.6.321. DOI
Kazakevich YV, LoBrutto R, Chan F, Patel T. Interpretation of the excess adsorption isotherms of organic eluent components on the surface of reversed-phase adsorbents effect on the analyte retention. J Chromatogr A. 2001;913:75–87. doi: 10.1016/S0021-9673(00)01239-5. PubMed DOI
Buszewski B, Bocian S, Zera R. Influence of temperature and pressure on the preferential adsorption of component of hydroorganic mobile phase in liquid chromatography. Adsorption. 2010;16:437–445. doi: 10.1007/s10450-010-9236-z. DOI
Buszewski B, Bocian S, Rychlicki G, Matyska M, Pesek J. Determination of accessible silanols groups on silica gel surfaces using microcalorimetric measurements. J Chromatogr A. 2012;1232:43–46. doi: 10.1016/j.chroma.2011.08.094. PubMed DOI
Buszewski B, Krupczyńska K, Rychlicki G, Łobiński R. Effect of coverage density and structure of chemically bonded silica stationary phases on the separation of compounds with various properties. J Sep Sci. 2006;29:829–836. doi: 10.1002/jssc.200500447. PubMed DOI
Bocian S, Vajda P, Felinger A, Buszewski B. Effect of end-capping and surface coverage on the mechanism of solvent adsorption. Chromatographia. 2010;71:S5–S11. doi: 10.1365/s10337-010-1522-0. DOI
Buszewski B, Bocian S, Rychlicki G, Vajda P, Felinger A. Study of solvent adsorption on chemically bonded stationary phases by microcalorimetry and liquid chromatography. J Colloid Interf Sci. 2010;349:620–625. doi: 10.1016/j.jcis.2010.05.096. PubMed DOI