Thermodynamic study of lanthanide(III) complexes with bifunctional monophosphinic acid analogues of H4dota and comparative kinetic study of yttrium(III) complexes
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media print-electronic
Document type Journal Article
PubMed
17225905
DOI
10.1039/b613404a
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
New bifunctional H(4)dota-like ligands with three acetic acid and one phosphinic acid pendant arms and propionate (H(5)do3ap(PrA)) or 4-aminobenzyl (H(4)do3ap(ABn)) reactive groups bound to the phosphorus atom were investigated. Potentiometric studies showed that the ligands have a similar basicity to the parent H(4)dota and the stability constants of their complexes with sodium(i) and selected lanthanide(III) ions are also similar. Formation and acid-assisted decomplexation kinetics of yttrium(III) complexes with a series of H(4)dota-like ligands (H(4)dota and its phosphinic/phosphonic acid analogues) were studied and the reactions are sensitive to a slight modification of the ligand structure. The (2-carboxyethyl)phosphinic acid derivative H(5)do3ap(PrA) and the phosphonic acid ligand H(5)do3ap form complexes faster than H(4)dota. The most kinetically inert complex is that with H(4)do3ap(ABn). Rates of complexation and decomplexation can depend on the ability to transfer proton(s) outside/inside the complex cavity and, therefore, on the hydrophobicity of the ligands. The results demonstrate that the new bifunctional ligands are suitable for labelling biomolecules with yttrium(iii) radioisotopes for utilization in nuclear medicine.
References provided by Crossref.org
Optical imaging of localized chemical events using programmable diamond quantum nanosensors