Selective and clean synthesis of aminoalkyl-H-phosphinic acids from hypophosphorous acid by phospha-Mannich reaction

. 2020 Jun 02 ; 10 (36) : 21329-21349. [epub] 20200604

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35518776

Aminoalkyl-H-phosphinic acids, also called aminoalkylphosphonous acids, are investigated as biologically active analogues of carboxylic amino acids and/or as valuable intermediates for synthesis of other aminoalkylphosphorus acids. Their synthesis has been mostly accomplished by phospha-Mannich reaction of a P-H precursor, an aldehyde and an amine. The reaction is rarely clean and high-yielding. Here, reaction of H3PO2 with secondary amines and formaldehyde in wet AcOH led to aminomethyl-H-phosphinic acids in nearly quantitative yields and with almost no by-products. Surprisingly, the reaction outcome depended on the basicity of the amines. Amines with pK a > 7-8 gave the desired products. For less basic amines, reductive N-methylation coupled with oxidation of H3PO2 to H3PO3 became a relevant side reaction. Primary amines reacted less clearly and amino-bis(methyl-H-phosphinic acids) were obtained only for very basic amines. Reaction yields with higher aldehydes were lower. Unique carboxylic-phosphinic-phosphonic acids as well as poly(H-phosphinic acids) derived from polyamines were obtained. Synthetic usefulness of the aminoalkyl-H-phosphinic was illustrated in P-H bond oxidation and its addition to double bonds, and in selective amine deprotection. Compounds with an ethylene-diamine fragment, e.g. most common polyazamacrocycles, are not suitable substrates. The X-ray solid-state structures of seventeen aminoalkyl-phosphinic acids were determined. In the reaction mechanism, N-hydroxyalkyl species R2NCH2OH and [R2N(CH2OH)2]+, probably stabilized as acetate esters, are suggested as the reactive intermediates. This mechanism is an alternative one to the known phospha-Mannich reaction mechanisms. The conditions can be utilized in syntheses of various aminoalkylphosphorus compounds.

Zobrazit více v PubMed

Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity, ed. V. P. Kukhar and H. R. Hudson, Wiley, Chichester, UK, 2000

Mucha A. Kafarski P. Berlicki Ł. J. Med. Chem. 2011;54:5955–5980. doi: 10.1021/jm200587f. PubMed DOI

Virieux D. Volle J.-N. Bakalara N. Pirat J.-L. Top. Curr. Chem. 2015;360:39–114. doi: 10.1007/128_2014_566. PubMed DOI

Horsman G. P. Zechel D. L. Chem. Rev. 2017;117:5704–5783. doi: 10.1021/acs.chemrev.6b00536. PubMed DOI

Ordóñez M. Viveros-Ceballos J. L. Sayago F. J. Cativiela C. Synthesis. 2017;49:987–997. doi: 10.1055/s-0036-1588617. DOI

Yiotakis A. Georgiadis D. Matziari M. Makaritis A. Dive V. Curr. Org. Chem. 2004;8:1135–1158. doi: 10.2174/1385272043370177. DOI

Mucha A. Molecules. 2012;17:13530–13568. doi: 10.3390/molecules171113530. PubMed DOI PMC

Georgiadis D. Dive V. Top. Curr. Chem. 2015;360:1–38. PubMed

Viveros-Ceballos J. L. Ordóñez M. Sayago F. J. Cativiela C. Molecules. 2016;21:1141. doi: 10.3390/molecules21091141. PubMed DOI PMC

Talma M. Maślanka M. Mucha A. Bioorg. Med. Chem. Lett. 2019;29:1031–1042. doi: 10.1016/j.bmcl.2019.02.034. PubMed DOI

Motekaitis R. J. Murase I. Martell A. E. Inorg. Nucl. Chem. Lett. 1971;7:1103–1107. doi: 10.1016/0020-1650(71)80101-0. DOI

Baylis E. K. Campbell C. D. Dingwall J. G. J. Chem. Soc., Perkin Trans. 1. 1984:2845–2853. doi: 10.1039/P19840002845. DOI

Khomutov R. M. Khurs E. N. Osipova T. I. Mendeleev Commun. 2011;21:106–107. doi: 10.1016/j.mencom.2011.03.017. DOI

Karanewsky D. S. Badia M. C. Tetrahedron Lett. 1986;27:1751–1754. doi: 10.1016/S0040-4039(00)84364-6. DOI

Metcalf W. W. van der Donk W. A. Annu. Rev. Biochem. 2009;78:65–94. doi: 10.1146/annurev.biochem.78.091707.100215. PubMed DOI PMC

Maier L. Phosphorus, Sulfur Silicon Relat. Elem. 1983;14:295–322. doi: 10.1080/03086648308073262. DOI

Kafarski P. and Zoń J., in Aminophosphonic and Aminophosphinic Acids, ed. V. P. Kukhar and H. R. Hudson, Wiley, Chichester, UK, 2000, pp. 33–74

Yudelevich V. I. Sokolov L. B. Ionin B. I. Russ. Chem. Rev. 1980;49:46–58. doi: 10.1070/RC1980v049n01ABEH002444. DOI

Bravo-Altamirano K. and Montchamp J.-L., Alkyl esters of phosphinic acid, in e-ROS – Encyclopedia of Reagents for Organic Synthesis, Wiley, 2nd edn, 2013

Montchamp J.-L. J. Organomet. Chem. 2005;690:2388–2406. doi: 10.1016/j.jorganchem.2004.10.005. DOI

Cristau H.-J. Coulombeau A. Genevois-Borella A. Pirat J.-L. Tetrahedron Lett. 2001;42:4491–4494. doi: 10.1016/S0040-4039(01)00768-7. DOI

Cristau H.-J. Coulombeau A. Genevois-Borella A. Sanchez F. Pirat J.-L. J. Organomet. Chem. 2002;643–644:381–391. doi: 10.1016/S0022-328X(01)01238-4. DOI

Pirat J.-L. Coulombeau A. Genevois-Borella A. Cristau H.-J. Phosphorus, Sulfur Silicon Relat. Elem. 2002;177:1793–1796. doi: 10.1080/10426500212259. DOI

Mondal S., Bis(trimethylsiloxy)phosphine, in e-ROS – Encyclopedia of Reagents for Organic Synthesis, Wiley, 2nd edn, 2013

Jiao X. Y. Verbruggen C. Borloo M. Bollaert W. Groot A. D. Dommisse R. Haemers A. Synthesis. 1994:23–24. doi: 10.1055/s-1994-25395. DOI

Li S. Whitehead J. K. Hammer R. P. J. Org. Chem. 2007;72:3116–3118. doi: 10.1021/jo070266p. PubMed DOI

Lauer-Fields J. Brew K. Whitehead J. K. Li S. Hammer R. P. Fields G. B. J. Am. Chem. Soc. 2007;129:10408–10417. doi: 10.1021/ja0715849. PubMed DOI PMC

Olszewski T. K. Boduszek B. Synthesis. 2011:437–442. doi: 10.1055/s-0030-1258387. DOI

McCleery P. P. Tuck B. J. Chem. Soc., Perkin Trans. 1. 1989:1319–1329. doi: 10.1039/P19890001319. DOI

Dingwall J. G. Ehrenfreund J. Hall R. G. Tetrahedron. 1989;45:3787–3808. doi: 10.1016/S0040-4020(01)89240-1. DOI

Baylis E. K. Tetrahedron Lett. 1995;36:9385–9388. doi: 10.1016/0040-4039(95)01992-Q. DOI

Baylis E. K. Tetrahedron Lett. 1995;36:9389–9392. doi: 10.1016/0040-4039(95)01993-R. DOI

Haruki T. Yamagishi T. Yokomatsu T. Tetrahedron: Asymmetry. 2007;18:2886–2893. doi: 10.1016/j.tetasy.2007.11.021. DOI

Schmidt H. Chem. Ber. 1948;81:477–483. doi: 10.1002/cber.19480810604. DOI

Linfield W. M. Jungermann E. Guttman A. T. J. Org. Chem. 1961;26:4088–4092. doi: 10.1021/jo01068a106. DOI

Hamilton R. Walker B. Walker B. J. Tetrahedron Lett. 1995;36:4451–4454. doi: 10.1016/0040-4039(95)00750-7. DOI

Drag M. Dlugosz K. Oleksyszyn J. Synth. Commun. 2006;36:2787–2795. doi: 10.1080/00397910600767330. DOI

Lewkowski J. Karpowicz R. Rybarczyk M. Heteroat. Chem. 2008;19:35–37. doi: 10.1002/hc.20406. DOI

Romaniszyn M. Gajda A. Janczewski L. Gajda T. Phosphorus, Sulfur Silicon Relat. Elem. 2017;192:752–757. doi: 10.1080/10426507.2017.1308936. DOI

Maier L. Helv. Chim. Acta. 1967;50:1742–1746. doi: 10.1002/hlca.19670500705. DOI

Motekaitis R. J. Murase I. Martell A. E. J. Inorg. Nucl. Chem. 1971;33:3353–3365. doi: 10.1016/0022-1902(71)80657-7. DOI

Dhawan B. Redmore D. J. Chem. Res. 1988:34–35.

Kapura A. A. Shermergorn I. M. Zh. Obshch. Khim. 1989;59:1283–1290.

Bazakas K. Lukeš I. J. Chem. Soc., Dalton Trans. 1995:1133–1137. doi: 10.1039/DT9950001133. DOI

Kotková Z. Pereira G. A. Djanashvili K. Kotek J. Rudovský J. Hermann P. Elst L. V. Muller R. N. Geraldes C. F. G. C. Lukeš I. Peters J. A. Eur. J. Inorg. Chem. 2009:119–136. doi: 10.1002/ejic.200800859. DOI

Rudovský J. Kotek J. Hermann P. Lukeš I. Mainero V. Aime S. Org. Biomol. Chem. 2005;3:112–117. doi: 10.1039/B410103K. PubMed DOI

Rudovský J. Cígler P. Kotek J. Hermann P. Vojtíšek P. Lukeš I. Peters J. A. Elst L. V. Muller R. N. Chem.–Eur. J. 2005;11:2375–2384. doi: 10.1002/chem.200400367. PubMed DOI

Lebdušková P. Hermann P. Helm L. Tóth É. Kotek J. Binnemans K. Rudovský J. Lukeš I. Merbach A. E. Dalton Trans. 2007:493–501. doi: 10.1039/B612876A. PubMed DOI

Urbanovský P. Kotek J. Carniato F. Botta M. Hermann P. Inorg. Chem. 2019;58:5196–5210. doi: 10.1021/acs.inorgchem.9b00267. PubMed DOI

Försterová M. Svobodová I. Lubal P. Táborský P. Kotek J. Hermann P. Lukeš I. Dalton Trans. 2007:535–549. doi: 10.1039/B613404A. PubMed DOI

Procházková S. Kubíček V. Böhmová Z. Holá K. Kotek J. Hermann P. Dalton Trans. 2017;46:10484–10497. doi: 10.1039/C7DT01797A. PubMed DOI

Paúrová M. David T. Císařová I. Lubal P. Hermann P. Kotek J. New J. Chem. 2018;42:11908–11929. doi: 10.1039/C8NJ00419F. DOI

Procházková S. Kubíček V. Kotek J. Vágner A. Notni J. Hermann P. Dalton Trans. 2018;47:13006–13015. doi: 10.1039/C8DT02608D. PubMed DOI

Řezanka P. Kubíček V. Hermann P. Lukeš I. Synthesis. 2008:1431–1435.

Notni J. Hermann P. Havlíčková J. Kotek J. Kubíček V. Plutnar J. Loktionova N. Riss P. J. Rösch F. Lukeš I. Chem.–Eur. J. 2010;16:7174–7185. doi: 10.1002/chem.200903281. PubMed DOI

Šimeček J. Hermann P. Havlíčková J. Herdtweck E. Kapp T. G. Engelbogen N. Kessler H. Wester H.-J. Notni J. Chem.–Eur. J. 2013;19:7748–7757. doi: 10.1002/chem.201300338. PubMed DOI

Šimeček J. Zemek O. Hermann P. Notni J. Wester H.-J. Mol. Pharm. 2014;11:3893–3903. doi: 10.1021/mp400642s. PubMed DOI

David T. Hlinová V. Kubíček V. Bergmann R. Striese F. Berndt N. Szöllősi D. Kovács T. Máthé D. Bachmann M. Pietzsch H.-J. Hermann P. J. Med. Chem. 2018;61:8774–8796. doi: 10.1021/acs.jmedchem.8b00932. PubMed DOI

Reich D. Wurzer A. Wirtz M. Stiegler V. Spatz P. Pollmann J. Wester H.-J. Notni J. Chem. Commun. 2017;53:2586–2589. doi: 10.1039/C6CC10169K. PubMed DOI

Wurzer A. Seidl C. Morgenstern A. Bruchertseifer F. Schwaiger M. Wester H.-J. Notni J. Chem.–Eur. J. 2018;24:547–550. doi: 10.1002/chem.201702335. PubMed DOI PMC

Wurzer A. Vágner A. Horváth D. Fellegi F. Wester H.-J. Kálmán F. K. Notni J. Front. Chem. 2018;6:107. doi: 10.3389/fchem.2018.00107. PubMed DOI PMC

Vitha T. Kubíček V. Kotek J. Hermann P. Elst L. V. Muller R. N. Lukeš I. Peters J. A. Dalton Trans. 2009:3204–3214. doi: 10.1039/B820705D. PubMed DOI

Holub J. Meckel M. Kubíček V. Rösch F. Hermann P. Contrast Media Mol. Imaging. 2015;10:122–134. doi: 10.1002/cmmi.1606. PubMed DOI

Moedritzer K. Irani R. R. J. Org. Chem. 1966;31:1603–1607. doi: 10.1021/jo01343a067. DOI

Tircsó G. Bényei A. Király R. Lázár I. Pal R. Brücher E. Eur. J. Inorg. Chem. 2007:701–713. doi: 10.1002/ejic.200600891. DOI

Martell A. E. and Smith R. M., Critical Stability Constants, Plenum Press, New York, 1974–1989, vol. 1–6

NIST Standard Reference Database 46 (Critically Selected Stability Constants of Metal Complexes), version 7.0, National Institute of Standards and Technology: Gaithersburg, MD, 2003

SciFinder® using Chemistry Development (ACD/Labs) Software V11.02, ACD/Labs, ©1994–2020

Barbato F. di Martino G. Grumetto L. La Rotonda M. I. Eur. J. Pharm. Sci. 2004;22:261–269. doi: 10.1016/j.ejps.2004.03.019. PubMed DOI

Tircsó G. Bényei A. Király R. Lázár I. Pál R. Brücher E. Eur. J. Inorg. Chem. 2007:701–713. doi: 10.1002/ejic.200600891. DOI

Kaboudin B. Moradi K. Safaei E. Dehghan H. Salehi P. Phosphorus, Sulfur Silicon Relat. Elem. 2012;187:1521–1527. doi: 10.1080/10426507.2012.692133. DOI

Bell R. P. Lidwell O. M. Vaughan-Jackson M. W. J. Chem. Soc. 1936:1792–1799. doi: 10.1039/JR9360001792. DOI

Kuhn W., US Pat. 6624330, Sept. 23, 2003

Cataldo F. A. Polym. Int. 1996;39:91–99. doi: 10.1002/(SICI)1097-0126(199602)39:2<91::AID-PI446>3.0.CO;2-B. DOI

Popov A. Rönkkömäki H. Popov K. Lajunen L. H. J. Vendilo A. Inorg. Chim. Acta. 2003;353:1–7. doi: 10.1016/S0020-1693(03)00307-4. DOI

Royal G. Dahaoui-Gindrey V. Dahaoui S. Tabard A. Guilard R. Pulumbi P. Lecomte C. Eur. J. Org. Chem. 1998:1971–1975. doi: 10.1002/(SICI)1099-0690(199809)1998:9<1971::AID-EJOC1971>3.0.CO;2-D. DOI

Janesko B. G. Fisher H. C. Bridle M. J. Montchamp J.-L. J. Org. Chem. 2015;80:10025–10032. doi: 10.1021/acs.joc.5b01618. PubMed DOI

Aime S. Cavallotti C. Gianolio E. Givenzana G. B. Palmisano G. Sisti M. Tetrahedron Lett. 2002;43:8387–8389. doi: 10.1016/S0040-4039(02)01950-0. DOI

Choi S. K. Bank K. M. Song J. H. Lee D. H. Kim I. S. Jung D. I. Hahn J. T. Asian J. Chem. 2010;22:3094–3100.

Lee Y. G. Lee U. S. Yang J. W. Jung D. I. Hahn J. T. Asian J. Chem. 2014;26:805–808. doi: 10.14233/ajchem.2014.15550. DOI

Redmore D. J. Org. Chem. 1978;43:992–996. doi: 10.1021/jo00399a041. DOI

Rohovec J. Lukeš I. Vojtíšek P. Císařová I. Hermann P. J. Chem. Soc., Dalton Trans. 1996:2685–2691. doi: 10.1039/DT9960002685. DOI

Lukeš I. Kotek J. Vojtíšek P. Hermann P. Coord. Chem. Rev. 2001;216–217:287–312. doi: 10.1016/S0010-8545(01)00336-8. DOI

Renaud R. N. Leitch L. C. Can. J. Chem. 1968;46:385–390. doi: 10.1139/v68-061. DOI

Volz H. Ruchti L. Liebigs Ann. Chem. 1972;763:184–197. doi: 10.1002/jlac.19727630120. DOI

Ivanov B. E. Krokhina S. S. Valitova L. A. Anoshina N. P. Goldfarb É. I. Izv. Akad. Nauk SSSR, Ser. Khim. 1972:597–598.

Cherkasov R. A. Galkin V. I. Russ. Chem. Rev. 1998;67:857–882. doi: 10.1070/RC1998v067n10ABEH000421. DOI

Zefirov N. S. Matveeva E. D. Arkivoc. 2008;(i):1–17.

Wang Z., Comprehensive Organic Name Reactions and Reagents, Wiley, 2010, ch. 353, pp. 1588–1592

Keglevich G. Kiss N. Z. Menyhárd D. K. Fehérvári A. Csontos I. Heteroat. Chem. 2012;23:171–178. doi: 10.1002/hc.20767. DOI

Roger M. Patinec V. Bourgeois M. Tripier R. Triki S. Handel H. Tetrahedron. 2012;68:5637–5643. doi: 10.1016/j.tet.2012.04.057. DOI

Broan C. J. Cole E. Jankowski K. J. Parker D. Pulukkody K. Boyce B. A. Beeley N. R. A. Millar K. Millican A. T. Synthesis. 1992:63–69. doi: 10.1055/s-1992-34177. DOI

Lázár I. Sherry A. D. Synthesis. 1995:453–457. doi: 10.1055/s-1995-3923. DOI

Tyka R. Hägele G. Phosphorus, Sulfur Silicon Relat. Elem. 1989;44:103–107. doi: 10.1080/10426508908043712. DOI

Miranda C. Escartí F. Lamarque L. Yunta M. J. R. Navarro P. García-España E. Jimeno M. L. J. Am. Chem. Soc. 2004;126:823–833. doi: 10.1021/ja035671m. PubMed DOI

David T. Procházková S. Havlíčková J. Kotek J. Kubíček V. Hermann P. Lukeš I. Dalton Trans. 2013;42:2414–2422. doi: 10.1039/C2DT32045B. PubMed DOI

Issleib K. Balszuweit A. Richter H. J. Tonk W. Z. Chem. 1983;23:434–436. doi: 10.1002/zfch.19830231203. DOI

Makhloufi A. Frank W. Ganter C. Organometallics. 2012;31:2001–2008. doi: 10.1021/om201275z. DOI

Harris M. Elst L. V. Laurent S. Parac-Vogt T. N. Dalton Trans. 2016;45:4791–4801. doi: 10.1039/C5DT04801J. PubMed DOI

Rohovec J. Gyepes R. Císařová I. Rudovský J. Lukeš I. Tetrahedron Lett. 2000;41:1249–1253. doi: 10.1016/S0040-4039(99)02262-5. DOI

Barefield E. K. Foster A. K. Freeman G. M. Hodges K. D. Inorg. Chem. 1986;25:4663–4668. doi: 10.1021/ic00246a015. DOI

Bochno M. Berlicki Ł. Tetrahedron Lett. 2014;55:219–223. doi: 10.1016/j.tetlet.2013.10.153. DOI

Pirali T. Callipari G. Ercolano E. Genazzani A. A. Giovenzana G. B. Tron G. C. Org. Lett. 2008;10:4199–4202. doi: 10.1021/ol801612r. PubMed DOI

Sheldrick G. M., SHELXT2014/5, Program for Crystal Structure Solution from Diffraction Data, University of Göttingen, Göttingen, 2014

Sheldrick G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI

Hübschle C. B., Sheldrick G. M. and Dittrich B., ShelXle: a Qt graphical user interface for SHELXL, University of Göttingen, Göttingen, 2014 PubMed PMC

Hübschle C. B. Sheldrick G. M. Dittrich B. J. Appl. Crystallogr. 2011;44:1281–1284. doi: 10.1107/S0021889811043202. PubMed DOI PMC

Sheldrick G. M., SHELXL-2014/7. Program for Crystal Structure Refinement from Diffraction Data, University of Göttingen, Göttingen, 2017

Sheldrick G. M. Acta Crystallogr., Sect. A: Found. Adv. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...