Selective and clean synthesis of aminoalkyl-H-phosphinic acids from hypophosphorous acid by phospha-Mannich reaction
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35518776
PubMed Central
PMC9059144
DOI
10.1039/d0ra03075a
PII: d0ra03075a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Aminoalkyl-H-phosphinic acids, also called aminoalkylphosphonous acids, are investigated as biologically active analogues of carboxylic amino acids and/or as valuable intermediates for synthesis of other aminoalkylphosphorus acids. Their synthesis has been mostly accomplished by phospha-Mannich reaction of a P-H precursor, an aldehyde and an amine. The reaction is rarely clean and high-yielding. Here, reaction of H3PO2 with secondary amines and formaldehyde in wet AcOH led to aminomethyl-H-phosphinic acids in nearly quantitative yields and with almost no by-products. Surprisingly, the reaction outcome depended on the basicity of the amines. Amines with pK a > 7-8 gave the desired products. For less basic amines, reductive N-methylation coupled with oxidation of H3PO2 to H3PO3 became a relevant side reaction. Primary amines reacted less clearly and amino-bis(methyl-H-phosphinic acids) were obtained only for very basic amines. Reaction yields with higher aldehydes were lower. Unique carboxylic-phosphinic-phosphonic acids as well as poly(H-phosphinic acids) derived from polyamines were obtained. Synthetic usefulness of the aminoalkyl-H-phosphinic was illustrated in P-H bond oxidation and its addition to double bonds, and in selective amine deprotection. Compounds with an ethylene-diamine fragment, e.g. most common polyazamacrocycles, are not suitable substrates. The X-ray solid-state structures of seventeen aminoalkyl-phosphinic acids were determined. In the reaction mechanism, N-hydroxyalkyl species R2NCH2OH and [R2N(CH2OH)2]+, probably stabilized as acetate esters, are suggested as the reactive intermediates. This mechanism is an alternative one to the known phospha-Mannich reaction mechanisms. The conditions can be utilized in syntheses of various aminoalkylphosphorus compounds.
Zobrazit více v PubMed
Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity, ed. V. P. Kukhar and H. R. Hudson, Wiley, Chichester, UK, 2000
Mucha A. Kafarski P. Berlicki Ł. J. Med. Chem. 2011;54:5955–5980. doi: 10.1021/jm200587f. PubMed DOI
Virieux D. Volle J.-N. Bakalara N. Pirat J.-L. Top. Curr. Chem. 2015;360:39–114. doi: 10.1007/128_2014_566. PubMed DOI
Horsman G. P. Zechel D. L. Chem. Rev. 2017;117:5704–5783. doi: 10.1021/acs.chemrev.6b00536. PubMed DOI
Ordóñez M. Viveros-Ceballos J. L. Sayago F. J. Cativiela C. Synthesis. 2017;49:987–997. doi: 10.1055/s-0036-1588617. DOI
Yiotakis A. Georgiadis D. Matziari M. Makaritis A. Dive V. Curr. Org. Chem. 2004;8:1135–1158. doi: 10.2174/1385272043370177. DOI
Mucha A. Molecules. 2012;17:13530–13568. doi: 10.3390/molecules171113530. PubMed DOI PMC
Georgiadis D. Dive V. Top. Curr. Chem. 2015;360:1–38. PubMed
Viveros-Ceballos J. L. Ordóñez M. Sayago F. J. Cativiela C. Molecules. 2016;21:1141. doi: 10.3390/molecules21091141. PubMed DOI PMC
Talma M. Maślanka M. Mucha A. Bioorg. Med. Chem. Lett. 2019;29:1031–1042. doi: 10.1016/j.bmcl.2019.02.034. PubMed DOI
Motekaitis R. J. Murase I. Martell A. E. Inorg. Nucl. Chem. Lett. 1971;7:1103–1107. doi: 10.1016/0020-1650(71)80101-0. DOI
Baylis E. K. Campbell C. D. Dingwall J. G. J. Chem. Soc., Perkin Trans. 1. 1984:2845–2853. doi: 10.1039/P19840002845. DOI
Khomutov R. M. Khurs E. N. Osipova T. I. Mendeleev Commun. 2011;21:106–107. doi: 10.1016/j.mencom.2011.03.017. DOI
Karanewsky D. S. Badia M. C. Tetrahedron Lett. 1986;27:1751–1754. doi: 10.1016/S0040-4039(00)84364-6. DOI
Metcalf W. W. van der Donk W. A. Annu. Rev. Biochem. 2009;78:65–94. doi: 10.1146/annurev.biochem.78.091707.100215. PubMed DOI PMC
Maier L. Phosphorus, Sulfur Silicon Relat. Elem. 1983;14:295–322. doi: 10.1080/03086648308073262. DOI
Kafarski P. and Zoń J., in Aminophosphonic and Aminophosphinic Acids, ed. V. P. Kukhar and H. R. Hudson, Wiley, Chichester, UK, 2000, pp. 33–74
Yudelevich V. I. Sokolov L. B. Ionin B. I. Russ. Chem. Rev. 1980;49:46–58. doi: 10.1070/RC1980v049n01ABEH002444. DOI
Bravo-Altamirano K. and Montchamp J.-L., Alkyl esters of phosphinic acid, in e-ROS – Encyclopedia of Reagents for Organic Synthesis, Wiley, 2nd edn, 2013
Montchamp J.-L. J. Organomet. Chem. 2005;690:2388–2406. doi: 10.1016/j.jorganchem.2004.10.005. DOI
Cristau H.-J. Coulombeau A. Genevois-Borella A. Pirat J.-L. Tetrahedron Lett. 2001;42:4491–4494. doi: 10.1016/S0040-4039(01)00768-7. DOI
Cristau H.-J. Coulombeau A. Genevois-Borella A. Sanchez F. Pirat J.-L. J. Organomet. Chem. 2002;643–644:381–391. doi: 10.1016/S0022-328X(01)01238-4. DOI
Pirat J.-L. Coulombeau A. Genevois-Borella A. Cristau H.-J. Phosphorus, Sulfur Silicon Relat. Elem. 2002;177:1793–1796. doi: 10.1080/10426500212259. DOI
Mondal S., Bis(trimethylsiloxy)phosphine, in e-ROS – Encyclopedia of Reagents for Organic Synthesis, Wiley, 2nd edn, 2013
Jiao X. Y. Verbruggen C. Borloo M. Bollaert W. Groot A. D. Dommisse R. Haemers A. Synthesis. 1994:23–24. doi: 10.1055/s-1994-25395. DOI
Li S. Whitehead J. K. Hammer R. P. J. Org. Chem. 2007;72:3116–3118. doi: 10.1021/jo070266p. PubMed DOI
Lauer-Fields J. Brew K. Whitehead J. K. Li S. Hammer R. P. Fields G. B. J. Am. Chem. Soc. 2007;129:10408–10417. doi: 10.1021/ja0715849. PubMed DOI PMC
Olszewski T. K. Boduszek B. Synthesis. 2011:437–442. doi: 10.1055/s-0030-1258387. DOI
McCleery P. P. Tuck B. J. Chem. Soc., Perkin Trans. 1. 1989:1319–1329. doi: 10.1039/P19890001319. DOI
Dingwall J. G. Ehrenfreund J. Hall R. G. Tetrahedron. 1989;45:3787–3808. doi: 10.1016/S0040-4020(01)89240-1. DOI
Baylis E. K. Tetrahedron Lett. 1995;36:9385–9388. doi: 10.1016/0040-4039(95)01992-Q. DOI
Baylis E. K. Tetrahedron Lett. 1995;36:9389–9392. doi: 10.1016/0040-4039(95)01993-R. DOI
Haruki T. Yamagishi T. Yokomatsu T. Tetrahedron: Asymmetry. 2007;18:2886–2893. doi: 10.1016/j.tetasy.2007.11.021. DOI
Schmidt H. Chem. Ber. 1948;81:477–483. doi: 10.1002/cber.19480810604. DOI
Linfield W. M. Jungermann E. Guttman A. T. J. Org. Chem. 1961;26:4088–4092. doi: 10.1021/jo01068a106. DOI
Hamilton R. Walker B. Walker B. J. Tetrahedron Lett. 1995;36:4451–4454. doi: 10.1016/0040-4039(95)00750-7. DOI
Drag M. Dlugosz K. Oleksyszyn J. Synth. Commun. 2006;36:2787–2795. doi: 10.1080/00397910600767330. DOI
Lewkowski J. Karpowicz R. Rybarczyk M. Heteroat. Chem. 2008;19:35–37. doi: 10.1002/hc.20406. DOI
Romaniszyn M. Gajda A. Janczewski L. Gajda T. Phosphorus, Sulfur Silicon Relat. Elem. 2017;192:752–757. doi: 10.1080/10426507.2017.1308936. DOI
Maier L. Helv. Chim. Acta. 1967;50:1742–1746. doi: 10.1002/hlca.19670500705. DOI
Motekaitis R. J. Murase I. Martell A. E. J. Inorg. Nucl. Chem. 1971;33:3353–3365. doi: 10.1016/0022-1902(71)80657-7. DOI
Dhawan B. Redmore D. J. Chem. Res. 1988:34–35.
Kapura A. A. Shermergorn I. M. Zh. Obshch. Khim. 1989;59:1283–1290.
Bazakas K. Lukeš I. J. Chem. Soc., Dalton Trans. 1995:1133–1137. doi: 10.1039/DT9950001133. DOI
Kotková Z. Pereira G. A. Djanashvili K. Kotek J. Rudovský J. Hermann P. Elst L. V. Muller R. N. Geraldes C. F. G. C. Lukeš I. Peters J. A. Eur. J. Inorg. Chem. 2009:119–136. doi: 10.1002/ejic.200800859. DOI
Rudovský J. Kotek J. Hermann P. Lukeš I. Mainero V. Aime S. Org. Biomol. Chem. 2005;3:112–117. doi: 10.1039/B410103K. PubMed DOI
Rudovský J. Cígler P. Kotek J. Hermann P. Vojtíšek P. Lukeš I. Peters J. A. Elst L. V. Muller R. N. Chem.–Eur. J. 2005;11:2375–2384. doi: 10.1002/chem.200400367. PubMed DOI
Lebdušková P. Hermann P. Helm L. Tóth É. Kotek J. Binnemans K. Rudovský J. Lukeš I. Merbach A. E. Dalton Trans. 2007:493–501. doi: 10.1039/B612876A. PubMed DOI
Urbanovský P. Kotek J. Carniato F. Botta M. Hermann P. Inorg. Chem. 2019;58:5196–5210. doi: 10.1021/acs.inorgchem.9b00267. PubMed DOI
Försterová M. Svobodová I. Lubal P. Táborský P. Kotek J. Hermann P. Lukeš I. Dalton Trans. 2007:535–549. doi: 10.1039/B613404A. PubMed DOI
Procházková S. Kubíček V. Böhmová Z. Holá K. Kotek J. Hermann P. Dalton Trans. 2017;46:10484–10497. doi: 10.1039/C7DT01797A. PubMed DOI
Paúrová M. David T. Císařová I. Lubal P. Hermann P. Kotek J. New J. Chem. 2018;42:11908–11929. doi: 10.1039/C8NJ00419F. DOI
Procházková S. Kubíček V. Kotek J. Vágner A. Notni J. Hermann P. Dalton Trans. 2018;47:13006–13015. doi: 10.1039/C8DT02608D. PubMed DOI
Řezanka P. Kubíček V. Hermann P. Lukeš I. Synthesis. 2008:1431–1435.
Notni J. Hermann P. Havlíčková J. Kotek J. Kubíček V. Plutnar J. Loktionova N. Riss P. J. Rösch F. Lukeš I. Chem.–Eur. J. 2010;16:7174–7185. doi: 10.1002/chem.200903281. PubMed DOI
Šimeček J. Hermann P. Havlíčková J. Herdtweck E. Kapp T. G. Engelbogen N. Kessler H. Wester H.-J. Notni J. Chem.–Eur. J. 2013;19:7748–7757. doi: 10.1002/chem.201300338. PubMed DOI
Šimeček J. Zemek O. Hermann P. Notni J. Wester H.-J. Mol. Pharm. 2014;11:3893–3903. doi: 10.1021/mp400642s. PubMed DOI
David T. Hlinová V. Kubíček V. Bergmann R. Striese F. Berndt N. Szöllősi D. Kovács T. Máthé D. Bachmann M. Pietzsch H.-J. Hermann P. J. Med. Chem. 2018;61:8774–8796. doi: 10.1021/acs.jmedchem.8b00932. PubMed DOI
Reich D. Wurzer A. Wirtz M. Stiegler V. Spatz P. Pollmann J. Wester H.-J. Notni J. Chem. Commun. 2017;53:2586–2589. doi: 10.1039/C6CC10169K. PubMed DOI
Wurzer A. Seidl C. Morgenstern A. Bruchertseifer F. Schwaiger M. Wester H.-J. Notni J. Chem.–Eur. J. 2018;24:547–550. doi: 10.1002/chem.201702335. PubMed DOI PMC
Wurzer A. Vágner A. Horváth D. Fellegi F. Wester H.-J. Kálmán F. K. Notni J. Front. Chem. 2018;6:107. doi: 10.3389/fchem.2018.00107. PubMed DOI PMC
Vitha T. Kubíček V. Kotek J. Hermann P. Elst L. V. Muller R. N. Lukeš I. Peters J. A. Dalton Trans. 2009:3204–3214. doi: 10.1039/B820705D. PubMed DOI
Holub J. Meckel M. Kubíček V. Rösch F. Hermann P. Contrast Media Mol. Imaging. 2015;10:122–134. doi: 10.1002/cmmi.1606. PubMed DOI
Moedritzer K. Irani R. R. J. Org. Chem. 1966;31:1603–1607. doi: 10.1021/jo01343a067. DOI
Tircsó G. Bényei A. Király R. Lázár I. Pal R. Brücher E. Eur. J. Inorg. Chem. 2007:701–713. doi: 10.1002/ejic.200600891. DOI
Martell A. E. and Smith R. M., Critical Stability Constants, Plenum Press, New York, 1974–1989, vol. 1–6
NIST Standard Reference Database 46 (Critically Selected Stability Constants of Metal Complexes), version 7.0, National Institute of Standards and Technology: Gaithersburg, MD, 2003
SciFinder® using Chemistry Development (ACD/Labs) Software V11.02, ACD/Labs, ©1994–2020
Barbato F. di Martino G. Grumetto L. La Rotonda M. I. Eur. J. Pharm. Sci. 2004;22:261–269. doi: 10.1016/j.ejps.2004.03.019. PubMed DOI
Tircsó G. Bényei A. Király R. Lázár I. Pál R. Brücher E. Eur. J. Inorg. Chem. 2007:701–713. doi: 10.1002/ejic.200600891. DOI
Kaboudin B. Moradi K. Safaei E. Dehghan H. Salehi P. Phosphorus, Sulfur Silicon Relat. Elem. 2012;187:1521–1527. doi: 10.1080/10426507.2012.692133. DOI
Bell R. P. Lidwell O. M. Vaughan-Jackson M. W. J. Chem. Soc. 1936:1792–1799. doi: 10.1039/JR9360001792. DOI
Kuhn W., US Pat. 6624330, Sept. 23, 2003
Cataldo F. A. Polym. Int. 1996;39:91–99. doi: 10.1002/(SICI)1097-0126(199602)39:2<91::AID-PI446>3.0.CO;2-B. DOI
Popov A. Rönkkömäki H. Popov K. Lajunen L. H. J. Vendilo A. Inorg. Chim. Acta. 2003;353:1–7. doi: 10.1016/S0020-1693(03)00307-4. DOI
Royal G. Dahaoui-Gindrey V. Dahaoui S. Tabard A. Guilard R. Pulumbi P. Lecomte C. Eur. J. Org. Chem. 1998:1971–1975. doi: 10.1002/(SICI)1099-0690(199809)1998:9<1971::AID-EJOC1971>3.0.CO;2-D. DOI
Janesko B. G. Fisher H. C. Bridle M. J. Montchamp J.-L. J. Org. Chem. 2015;80:10025–10032. doi: 10.1021/acs.joc.5b01618. PubMed DOI
Aime S. Cavallotti C. Gianolio E. Givenzana G. B. Palmisano G. Sisti M. Tetrahedron Lett. 2002;43:8387–8389. doi: 10.1016/S0040-4039(02)01950-0. DOI
Choi S. K. Bank K. M. Song J. H. Lee D. H. Kim I. S. Jung D. I. Hahn J. T. Asian J. Chem. 2010;22:3094–3100.
Lee Y. G. Lee U. S. Yang J. W. Jung D. I. Hahn J. T. Asian J. Chem. 2014;26:805–808. doi: 10.14233/ajchem.2014.15550. DOI
Redmore D. J. Org. Chem. 1978;43:992–996. doi: 10.1021/jo00399a041. DOI
Rohovec J. Lukeš I. Vojtíšek P. Císařová I. Hermann P. J. Chem. Soc., Dalton Trans. 1996:2685–2691. doi: 10.1039/DT9960002685. DOI
Lukeš I. Kotek J. Vojtíšek P. Hermann P. Coord. Chem. Rev. 2001;216–217:287–312. doi: 10.1016/S0010-8545(01)00336-8. DOI
Renaud R. N. Leitch L. C. Can. J. Chem. 1968;46:385–390. doi: 10.1139/v68-061. DOI
Volz H. Ruchti L. Liebigs Ann. Chem. 1972;763:184–197. doi: 10.1002/jlac.19727630120. DOI
Ivanov B. E. Krokhina S. S. Valitova L. A. Anoshina N. P. Goldfarb É. I. Izv. Akad. Nauk SSSR, Ser. Khim. 1972:597–598.
Cherkasov R. A. Galkin V. I. Russ. Chem. Rev. 1998;67:857–882. doi: 10.1070/RC1998v067n10ABEH000421. DOI
Zefirov N. S. Matveeva E. D. Arkivoc. 2008;(i):1–17.
Wang Z., Comprehensive Organic Name Reactions and Reagents, Wiley, 2010, ch. 353, pp. 1588–1592
Keglevich G. Kiss N. Z. Menyhárd D. K. Fehérvári A. Csontos I. Heteroat. Chem. 2012;23:171–178. doi: 10.1002/hc.20767. DOI
Roger M. Patinec V. Bourgeois M. Tripier R. Triki S. Handel H. Tetrahedron. 2012;68:5637–5643. doi: 10.1016/j.tet.2012.04.057. DOI
Broan C. J. Cole E. Jankowski K. J. Parker D. Pulukkody K. Boyce B. A. Beeley N. R. A. Millar K. Millican A. T. Synthesis. 1992:63–69. doi: 10.1055/s-1992-34177. DOI
Lázár I. Sherry A. D. Synthesis. 1995:453–457. doi: 10.1055/s-1995-3923. DOI
Tyka R. Hägele G. Phosphorus, Sulfur Silicon Relat. Elem. 1989;44:103–107. doi: 10.1080/10426508908043712. DOI
Miranda C. Escartí F. Lamarque L. Yunta M. J. R. Navarro P. García-España E. Jimeno M. L. J. Am. Chem. Soc. 2004;126:823–833. doi: 10.1021/ja035671m. PubMed DOI
David T. Procházková S. Havlíčková J. Kotek J. Kubíček V. Hermann P. Lukeš I. Dalton Trans. 2013;42:2414–2422. doi: 10.1039/C2DT32045B. PubMed DOI
Issleib K. Balszuweit A. Richter H. J. Tonk W. Z. Chem. 1983;23:434–436. doi: 10.1002/zfch.19830231203. DOI
Makhloufi A. Frank W. Ganter C. Organometallics. 2012;31:2001–2008. doi: 10.1021/om201275z. DOI
Harris M. Elst L. V. Laurent S. Parac-Vogt T. N. Dalton Trans. 2016;45:4791–4801. doi: 10.1039/C5DT04801J. PubMed DOI
Rohovec J. Gyepes R. Císařová I. Rudovský J. Lukeš I. Tetrahedron Lett. 2000;41:1249–1253. doi: 10.1016/S0040-4039(99)02262-5. DOI
Barefield E. K. Foster A. K. Freeman G. M. Hodges K. D. Inorg. Chem. 1986;25:4663–4668. doi: 10.1021/ic00246a015. DOI
Bochno M. Berlicki Ł. Tetrahedron Lett. 2014;55:219–223. doi: 10.1016/j.tetlet.2013.10.153. DOI
Pirali T. Callipari G. Ercolano E. Genazzani A. A. Giovenzana G. B. Tron G. C. Org. Lett. 2008;10:4199–4202. doi: 10.1021/ol801612r. PubMed DOI
Sheldrick G. M., SHELXT2014/5, Program for Crystal Structure Solution from Diffraction Data, University of Göttingen, Göttingen, 2014
Sheldrick G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI
Hübschle C. B., Sheldrick G. M. and Dittrich B., ShelXle: a Qt graphical user interface for SHELXL, University of Göttingen, Göttingen, 2014 PubMed PMC
Hübschle C. B. Sheldrick G. M. Dittrich B. J. Appl. Crystallogr. 2011;44:1281–1284. doi: 10.1107/S0021889811043202. PubMed DOI PMC
Sheldrick G. M., SHELXL-2014/7. Program for Crystal Structure Refinement from Diffraction Data, University of Göttingen, Göttingen, 2017
Sheldrick G. M. Acta Crystallogr., Sect. A: Found. Adv. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC