Piezo-Enhanced Photocatalytic Activity of the Electrospun Fibrous Magnetic PVDF/BiFeO3 Membrane
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-73-10091
Russian Science Foundation
LM2018110
CEITEC Nano Research Infrastructure supported by MEYS CR
19-17457S
Grant Agency of Czech Republic
PubMed
36616597
PubMed Central
PMC9824544
DOI
10.3390/polym15010246
PII: polym15010246
Knihovny.cz E-zdroje
- Klíčová slova
- BiFeO3, PVDF, electrospinning, fibers, photocatalysis, piezo-photocatalysis, piezocatalysis, smart materials,
- Publikační typ
- časopisecké články MeSH
Creating stimulus-sensitive smart catalysts capable of decomposing organic dyes with high efficiency is a critical task in ecology. Combining the advantages of photoactive piezoelectric nanomaterials and ferroelectric polymers can effectively solve this problem by collecting mechanical vibrations and light energy. Using the electrospinning method, we synthesized hybrid polymer-inorganic nanocomposite fiber membranes based on polyvinylidene fluoride (PVDF) and bismuth ferrite (BFO). The samples were studied by scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), total transmittance and diffuse reflectance, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), vibrating-sample magnetometer (VSM), and piezopotential measurements. It has been demonstrated that the addition of BFO leads to an increase in the proportion of the polar phase from 86.5% to 96.1% due to the surface ion-dipole interaction. It is shown that the composite exhibits anisotropy of magnetic properties depending on the orientation of the magnetic field. The results of piezo-photocatalytic experiments showed that under the combined action of ultrasonic treatment and irradiation with both visible and UV light, the reaction rate increased in comparison with photolysis, sonolysis, and piezocatalysis. Moreover, for PVDF/BFO, which does not exhibit photocatalytic activity, under the combined action of light and ultrasound, the reaction rate increases by about 3× under UV irradiation and by about 6× under visible light irradiation. This behavior is explained by the piezoelectric potential and the narrowing of the band gap of the composite due to mechanical stress caused by the ultrasound.
Zobrazit více v PubMed
Vaiano V., Sacco O., Sannino D., Ciambelli P. Nanostructured N-doped TiO2 coated on glass spheres for the photocatalytic removal of organic dyes under UV or visible light irradiation. Appl. Catal. B Environ. 2015;170–171:153–161. doi: 10.1016/j.apcatb.2015.01.039. DOI
Singha K., Pandit P., Maity S., Sharma S.R. Green Chemistry for Sustainable Textiles: Modern Design and Approaches. Elsevier; Amsterdam, The Netherlands: 2021. Harmful environmental effects for textile chemical dyeing practice; pp. 153–164. DOI
Al-Tohamy R., Ali S.S., Li F., Okasha K.M., Mahmoud Y.A., Elsamahy T., Jiao H., Fu Y., Sun J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022;231:113160. doi: 10.1016/j.ecoenv.2021.113160. PubMed DOI
Kishor R., Purchase D., Saratale G.D., Saratale R.G., Ferreira L.F.R., Bilal M., Chandra R., Bharagava R.N. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng. 2021;9:105012. doi: 10.1016/j.jece.2020.105012. DOI
Miklos D.B., Remy C., Jekel M., Linden K.G., Drewes J.E., Hübner U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018;139:118–131. doi: 10.1016/j.watres.2018.03.042. PubMed DOI
Tikhanova S.M., Lebedev L.A., Martinson K.D., Chebanenko M.I., Buryanenko I.V., Semenov V.G., Nevedomskiy V.N., Popkov V.I. The synthesis of novel heterojunction h-YbFeO3/o-YbFeO3 photocatalyst with enhanced Fenton-like activity under visible-light. New J. Chem. 2021;45:1541–1550. doi: 10.1039/D0NJ04895J. DOI
Tikhanova S.M., Lebedev L.A., Kirillova S.A., Tomkovich M.V., Popkov V.I. Synthesis, structure, and visible-light-driven activity of o-YbFeO3/h-YbFeO3/CeO2 photocatalysts. Chim. Technol. Acta. 2021;8:20218407. doi: 10.15826/chimtech.2021.8.4.07. DOI
Ismail G.A., Sakai H. Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal. Chemosphere. 2022;291:132906. doi: 10.1016/j.chemosphere.2021.132906. PubMed DOI
Rabadanova A.E., Gadzhimagomedov S.K., Alikhanov N.M., Ilyichev M.V., Emirov R.M., Orudzhev F.F., Faradzhev S.P., Saipulaev P.M. Structure and dielectric properties of Bi1−xLaxFeO3 nanostructured ceramics. Ferroelectrics. 2021;576:1–7. doi: 10.1080/00150193.2021.1888254. DOI
Orudzhev F., Ramazanov S., Sobola D., Alikhanov N., Holcman V., Škvarenina L., Kaspar P., Gadjilov G. Piezoelectric Current Generator Based on Bismuth Ferrite Nanoparticles. Sensors. 2020;20:6736. doi: 10.3390/S20236736. PubMed DOI PMC
Amirov A.A., Makoed I.I., Chaudhari Y.A., Bendre S.T., Yusupov D.M., Asvarov A.S., Liedienov N.A., Pashchenko A.V. Magnetocaloric Effect in BiFe1−xZnxO3 Multiferroics. J. Supercond. Nov. Magn. 2018;31:3283–3288. doi: 10.1007/s10948-018-4590-2. DOI
Alikhanov N.M., Rabadanov M.K., Orudzhev F.F., Gadzhimagomedov S.K., Emirov R.M., Sadykov S.A., Kallaev S.N., Ramazanov S.M., Abdulvakhidov K.G., Sobola D. Size-dependent structural parameters, optical, and magnetic properties of facile synthesized pure-phase BiFeO3. J. Mater. Sci. Mater. Electron. 2021;32:13323–13335. doi: 10.1007/s10854-021-05911-9. DOI
Orudzhev F., Alikhanov N.r., Rabadanov M., Ramazanov S., Isaev A., Gadzhimagomedov S., Aliyev A., Abdullaev V. Synthesis and study of the properties of magnetically separable nanophotocatalyst BiFeO3. Chem. Probl. 2018;16:484–495. doi: 10.32737/2221-8688-2018-4-484-495. DOI
Orudzhev F.F., Alikhanov N.M., Ramazanov S.M., Sobola D.S., Murtazali R.K., Ismailov E.H., Gasimov R.D., Aliev A.S., Ţălu Ş. Morphotropic Phase Boundary Enhanced Photocatalysis in Sm Doped BiFeO3. Molecules. 2022;27:7029. doi: 10.3390/molecules27207029. PubMed DOI PMC
Mushtaq F., Chen X., Hoop M., Torlakcik H., Pellicer E., Sort J., Gattinoni C., Nelson B.J., Pané S. Piezoelectrically Enhanced Photocatalysis with BiFeO3 Nanostructures for Efficient Water Remediation. iScience. 2018;4:236–246. doi: 10.1016/j.isci.2018.06.003. PubMed DOI PMC
Ponraj C., Vinitha G., Daniel J. A review on the visible light active BiFeO3 nanostructures as suitable photocatalyst in the degradation of different textile dyes. Environ. Nanotechnol. Monit. Manag. 2017;7:110–120. doi: 10.1016/J.ENMM.2017.02.001. DOI
Lam S.M., Sin J.C., Mohamed A.R. A newly emerging visible light-responsive BiFeO3 perovskite for photocatalytic applications: A mini review. Mater. Res. Bull. 2017;90:15–30. doi: 10.1016/j.materresbull.2016.12.052. DOI
You D., Liu L., Yang Z., Xing X., Li K., Mai W., Guo T., Xiao G., Xu C. Polarization-induced internal electric field to manipulate piezo-photocatalytic and ferro-photoelectrochemical performance in bismuth ferrite nanofibers. Nano Energy. 2022;93:106852. doi: 10.1016/j.nanoen.2021.106852. DOI
Nguyen T.N.N., Chang K.S. Piezophotodegradation and piezophotoelectrochemical water splitting of hydrothermally grown BiFeO3 films with various morphologies. J. Environ. Chem. Eng. 2022;10:107213. doi: 10.1016/j.jece.2022.107213. DOI
Lan S., Yu C., Sun F., Chen Y., Chen D., Mai W., Zhu M. Tuning piezoelectric driven photocatalysis by La-doped magnetic BiFeO3-based multiferroics for water purification. Nano Energy. 2022;93:106792. doi: 10.1016/j.nanoen.2021.106792. DOI
Liu Y.L., Wu J.M. Synergistically catalytic activities of BiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye molecule through piezophototronic effect. Nano Energy. 2019;56:74–81. doi: 10.1016/j.nanoen.2018.11.028. DOI
Sobolev K., Kolesnikova V., Omelyanchik A., Alekhina Y., Antipova V., Makarova L., Peddis D., Raikher Y.L., Levada K., Amirov A., et al. Effect of Piezoelectric BaTiO3 Filler on Mechanical and Magnetoelectric Properties of Zn0.25Co0.75Fe2O4/PVDF-TrFE Composites. Polymers. 2022;14:4807. doi: 10.3390/polym14224807. PubMed DOI PMC
Kadiev M.V., Shuaibov A.O., Abdurakhmanov M.G., Selimov D.A., Gulakhmedov R.R., Rabadanova A.A., Smejkalová T., Sobola D.S., Částková K., Ramazanov S.M., et al. Synthesis and Investigation of Piezophotocatalytic Properties of Polyvinylidene Fluoride Nanofibers Modified with Titanium Dioxide. Mosc. Univ. Chem. Bull. 2022;77:256–261. doi: 10.3103/S0027131422050054. DOI
Surmenev R.A., Chernozem R.V., Pariy I.O., Surmeneva M.A. A review on piezo- and pyroelectric responses of flexible nano- and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications. Nano Energy. 2021;79:105442. doi: 10.1016/j.nanoen.2020.105442. DOI
Rabadanova A., Rabadanova A., Abdurakhmanov M., Gulakhmedov R., Shuaibov A., Selimov D., Sobola D., Částková K., Ramazanov S., Orudzhev F. Piezo-, photo- and piezophotocatalytic activity of electrospun fibrous PVDF/CTAB membrane. Chim. Technol. Acta. 2022;9:20229420. doi: 10.15826/chimtech.2022.9.4.20. DOI
Luo Y., Zhao L., Luo G., Li M., Han X., Xia Y., Li Z., Lin Q., Yang P., Dai L., et al. All electrospun fabrics based piezoelectric tactile sensor. Nanotechnology. 2022;33:415502. doi: 10.1088/1361-6528/ac7ed5. PubMed DOI
Rodríguez-Tobías H., Morales G., Maldonado-Textle H., Grande D. Long-term Photo-degradation of Nanofibrous Composites Based on Poly(3-hydroxybutyrate) Electrospun Fibers Loaded with Zinc Oxide Nanoparticles. Fibers Polym. 2022;23:2717–2724. doi: 10.1007/s12221-022-4099-y. DOI
Wang R., Xie X., Xu C., Lin Y., You D., Chen J., Li Z., Shi Z., Cui Q., Wang M. Bi-piezoelectric effect assisted ZnO nanorods/PVDF-HFP spongy photocatalyst for enhanced performance on degrading organic pollutant. Chem. Eng. J. 2022;439:135787. doi: 10.1016/j.cej.2022.135787. DOI
Ichangi A., Khan L., Queraltó A., Grosch M., Weißing R., Ünlü F., Chijioke A.K., Verma A., Fischer T., Surmenev R., et al. Electrospun BiFeO3 Nanofibers for Vibrational Energy Harvesting Application. Adv. Eng. Mater. 2022;24:2101394. doi: 10.1002/adem.202101394. DOI
Sasmal A., Patra A., Maity S., Pratihar S., Sen S. Multiferroic BiFeO3-based hydrophobic polymer composites for polarization rationalization-induced piezo-tribo hybrid energy harvesting and versatile self-powered mechanosensing. Sustain. Energy Fuels. 2022;6:4652–4668. doi: 10.1039/D2SE00947A. DOI
Dash S., Choudhary R.N., Goswami M.N. Enhanced dielectric and ferroelectric properties of PVDF-BiFeO3 composites in 0–3 connectivity. J. Alloys Compd. 2017;715:29–36. doi: 10.1016/j.jallcom.2017.04.310. DOI
Sasmal A., Sen S., Devi P.S. Role of suppressed oxygen vacancies in the BiFeO3 nanofiller to improve the polar phase and multifunctional performance of poly(vinylidene fluoride) Phys. Chem. Chem. Phys. 2019;21:5974–5988. doi: 10.1039/C8CP07281G. PubMed DOI
Sasmal A., Sen S., Devi P.S. Frequency dependent energy storage and dielectric performance of Ba–Zr Co-doped BiFeO3 loaded PVDF based mechanical energy harvesters: Effect of corona poling. Soft Matter. 2020;16:8492–8505. doi: 10.1039/D0SM01031F. PubMed DOI
Martins P., Lopes A.C., Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014;39:683–706. doi: 10.1016/j.progpolymsci.2013.07.006. DOI
Kianfar P., Bongiovanni R., Ameduri B., Vitale A. Electrospinning of Fluorinated Polymers: Current State of the Art on Processes and Applications. Polym. Rev. 2022 doi: 10.1080/15583724.2022.2067868. DOI
Costa C.M., Cardoso V.F., Brito-Pereira R., Martins P., Correia D.M., Correia V., Ribeiro C., Martins P.M., Lanceros-Méndez S. Fascinating Fluoropolymers and Their Applications. Elsevier; Amsterdam, The Netherlands: 2020. Electroactive poly(vinylidene fluoride)-based materials: Recent progress, challenges, and opportunities; pp. 1–43. DOI
Altomare A., Bozorg M., Loos K. Fascinating Fluoropolymers and Their Applications. Elsevier; Amsterdam, The Netherlands: 2020. PVDF-based multiferroic; pp. 45–81. DOI
Kalimuldina G., Turdakyn N., Abay I., Medeubayev A., Nurpeissova A., Adair D., Bakenov Z. A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Sensors. 2020;20:5214. doi: 10.3390/s20185214. PubMed DOI PMC
He Z., Rault F., Vishwakarma A., Mohsenzadeh E., Salaün F. High-Aligned PVDF Nanofibers with a High Electroactive Phase Prepared by Systematically Optimizing the Solution Property and Process Parameters of Electrospinning. Coatings. 2022;12:1310. doi: 10.3390/coatings12091310. DOI
Xin Y., Zhu J., Sun H., Xu Y., Liu T., Qian C. A brief review on piezoelectric PVDF nanofibers prepared by electrospinning. Ferroelectrics. 2018;526:140–151. doi: 10.1080/00150193.2018.1456304. DOI
He Z., Rault F., Lewandowski M., Mohsenzadeh E., Salaün F. Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the β Phase and Crystallinity Enhancement. Polymers. 2021;13:174. doi: 10.3390/polym13020174. PubMed DOI PMC
Černohorský P., Pisarenko T., Papež N., Sobola D., Ţălu Ş., Částková K., Kaštyl J., Macků R., Škarvada P., Sedlák P. Structure Tuning and Electrical Properties of Mixed PVDF and Nylon Nanofibers. Materials. 2021;14:6096. doi: 10.3390/ma14206096. PubMed DOI PMC
Sedlak P., Gajdos A., Macku R., Majzner J., Holcman V., Sedlakova V., Kubersky P. The effect of thermal treatment on ac/dc conductivity and current fluctuations of PVDF/NMP/[EMIM][TFSI] solid polymer electrolyte. Sci. Rep. 2020;10:21140. doi: 10.1038/s41598-020-78363-6. PubMed DOI PMC
Papež N., Pisarenko T., Ščasnovič E., Sobola D., Ţălu Ş., Dallaev R., Klárǎkláračástková K., Sedlák P. A Brief Introduction and Current State of Polyvinylidene Fluoride as an Energy Harvester. Coatings. 2022;12:1429. doi: 10.3390/coatings12101429. DOI
Giraev K.M., Ashurbekov N.A., Lakhina M.A. Optical absorption and scattering spectra of pathological stomach tissues. J. Appl. Spectrosc. 2011;78:95–102. doi: 10.1007/S10812-011-9430-0. DOI
Giraev K.M., Ashurbekov N.A., Kobzev O.V. Optical characterization of biological tissues: Determining absorption and scattering coefficients. Tech. Phys. Lett. 2003;29:901–903. doi: 10.1134/1.1631358. DOI
Částková K., Kaštyl J., Sobola D., Petruš J., Šťastná E., Říha D., Tofel P. Structure—Properties Relationship of Electrospun PVDF Fibers. Nanomaterials. 2020;10:1221. doi: 10.3390/nano10061221. PubMed DOI PMC
Sobola D., Kaspar P., Částková K., Dallaev R., Papež N., Sedlák P., Trčka T., Orudzhev F., Kaštyl J., Weiser A., et al. PVDF Fibers Modification by Nitrate Salts Doping. Polymers. 2021;13:2439. doi: 10.3390/polym13152439. PubMed DOI PMC
Abdalla S., Obaid A., Al-Marzouki F.M. Preparation and characterization of poly(vinylidene fluoride): A high dielectric performance nano-composite for electrical storage. Results Phys. 2016;6:617–626. doi: 10.1016/j.rinp.2016.09.003. DOI
Sedlak P., Sobola D., Gajdos A., Dallaev R., Nebojsa A., Kubersky P. Surface Analyses of PVDF/NMP/[EMIM][TFSI] Solid Polymer Electrolyte. Polymers. 2021;13:2678. doi: 10.3390/polym13162678. PubMed DOI PMC
Pickford T., Gu X., Heeley E.L., Wan C. Effects of an ionic liquid and processing conditions on the β-polymorph crystal formation in poly(vinylidene fluoride) CrystEngComm. 2019;21:5418–5428. doi: 10.1039/C9CE01051C. DOI
Orudzhev F., Ramazanov S., Sobola D., Kaspar P., Trčka T., Částková K., Kastyl J., Zvereva I., Wang C., Selimov D., et al. Ultrasound and water flow driven piezophototronic effect in self-polarized flexible α-Fe2O3 containing PVDF nanofibers film for enhanced catalytic oxidation. Nano Energy. 2021;90:106586. doi: 10.1016/j.nanoen.2021.106586. DOI
Zhang R., Wu X., Li Y., Shao W., Zhang Y., Liu Z., Nie J., Tan J., Ye W. Enhanced piezo-photocatalytic performance by piezoelectric and visible light photoexcitation coupling through piezoelectric Na0.5Bi0.5TiO3 micron crystals. RSC Adv. 2020;10:7443–7451. doi: 10.1039/d0ra01101k. PubMed DOI PMC