Long-Term High-Temperature Stress Impacts on Embryo and Seed Development in Brassica napus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35528932
PubMed Central
PMC9075611
DOI
10.3389/fpls.2022.844292
Knihovny.cz E-zdroje
- Klíčová slova
- Brassica napus, embryo development, high temperatures, hormonal profiling, oil content, seed development, thermomorphogenesis,
- Publikační typ
- časopisecké články MeSH
Brassica napus (rapeseed) is the second most important oilseed crop worldwide. Global rise in average ambient temperature and extreme weather severely impact rapeseed seed yield. However, fewer research explained the phenotype changes caused by moderate-to-high temperatures in rapeseed. To investigate these events, we determined the long-term response of three spring cultivars to different temperature regimes (21/18°C, 28/18°C, and 34/18°C) mimicking natural temperature variations. The analysis focused on the plant appearance, seed yield, quality and viability, and embryo development. Our microscopic observations suggest that embryonic development is accelerated and defective in high temperatures. Reduced viable seed yield at warm ambient temperature is due to a reduced fertilization rate, increased abortion rate, defective embryonic development, and pre-harvest sprouting. Reduced auxin levels in young seeds and low ABA and auxin levels in mature seeds may cause embryo pattern defects and reduced seed dormancy, respectively. Glucosinolates and oil composition measurements suggest reduced seed quality. These identified cues help understand seed thermomorphogenesis and pave the way to developing thermoresilient rapeseed.
Zobrazit více v PubMed
Aksouh-Harradj N. M., Campbell L. C., Mailer R. J. (2006). Canola response to high and moderately high temperature stresses during seed maturation. Can. J. Plant Sci. 86, 967–980. doi: 10.4141/p05-130 DOI
Alexander M. P. (1969). Differential staining of aborted and nonaborted pollen. Stain. Technol. 44, 117–122. doi: 10.3109/10520296909063335, PMID: PubMed DOI
Andersen C. L., Jensen J. L., Ørntoft T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250. doi: 10.1158/0008-5472.can-04-0496, PMID: PubMed DOI
Angadi S. V., Cutforth H. W., Miller P. R., McConkey B. G., Entz M. H., Brandt S. A., et al. . (2000). Response of three brassica species to high temperature stress during reproductive growth. Can. J. Plant Sci. 80, 693–701. doi: 10.4141/P99-152 DOI
Annisa A., Chen S., Turner N. C., Cowling W. A. (2013). Genetic variation for heat tolerance during the reproductive phase in Brassica rapa. J. Agron. Crop Sci. 199, 424–435. doi: 10.1111/jac.12034 DOI
Bac-Molenaar J. A., Fradin E. F., Becker F. F. M., Rienstra J. A., van der Schoot J., Vreugdenhil D., et al. . (2015). Genome-wide association mapping of fertility reduction upon heat stress reveals developmental stage-specific QTLs in Arabidopsis thaliana. Plant Cell 27, 1857–1874. doi: 10.1105/tpc.15.00248, PMID: PubMed DOI PMC
Benková E., Michniewicz M., Sauer M., Teichmann T. T., Seifertová D., Juergens G., et al. . (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602. doi: 10.1016/s0092-8674(03)00924-3, PMID: PubMed DOI
Bieniawska Z., Espinoza C., Schlereth A., Sulpice R., Hincha D. K., Hannah M. A. (2008). Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome. Plant Physiol. 147, 263–279. doi: 10.1104/pp.108.118059, PMID: PubMed DOI PMC
Blair E. J., Bonnot T., Hummel M., Hay E., Marzolino J. M., Quijada I. A., et al. . (2019). Contribution of time of day and the circadian clock to the heat stress responsive transcriptome in Arabidopsis. Sci. Rep. 9:4814. doi: 10.1038/s41598-019-41234-w, PMID: PubMed DOI PMC
Box M. S., Huang B. E., Domijan M., Jaeger K. E., Khattak A. K., Yoo S. J., et al. . (2015). ELF3 controls thermoresponsive growth in Arabidopsis. Curr. Biol. 25, 194–199. doi: 10.1016/j.cub.2014.10.076, PMID: PubMed DOI
Brooks M. E., Kristensen K., van Benthem K. J., Magnusson A., Berg C. W., Nielsen A., et al. . (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400. doi: 10.3929/ethz-b-000240890 DOI
Brunel-Muguet S., D’Hooghe P., Bataillé M.-P., Larré C., Kim T.-H., Trouverie J., et al. . (2015). Heat stress during seed filling interferes with sulfur restriction on grain composition and seed germination in oilseed rape (Brassica napus L.). Front. Plant Sci. 6:213. doi: 10.3389/fpls.2015.00213, PMID: PubMed DOI PMC
Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., et al. . (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622. doi: 10.1373/clinchem.2008.112797 PubMed DOI
Castander-Olarieta A., Montalbán I. A., Oliveira E. D. M., Dell’Aversana E., D’Amelia L., Carillo P., et al. . (2019). Effect of thermal stress on tissue ultrastructure and metabolite profiles during initiation of Radiata pine somatic embryogenesis. Front. Plant Sci. 9:2004. doi: 10.3389/fpls.2018.02004, PMID: PubMed DOI PMC
Celenza J. L., Quiel J. A., Smolen G. A., Merrikh H., Silvestro A. R., Normanly J., et al. . (2005). The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol. 137, 253–262. doi: 10.1104/pp.104.054395, PMID: PubMed DOI PMC
Chen S., Guo Y., Sirault X., Stefanova K., Saradadevi R., Turner N. C., et al. . (2019). Nondestructive phenomic tools for the prediction of heat and drought tolerance at anthesis in brassica species. Plant Phenomics 2019:3264872. doi: 10.34133/2019/3264872, PMID: PubMed DOI PMC
Chen S., Stefanova K., Siddique K. H. M., Cowling W. A. (2020a). Transient daily heat stress during the early reproductive phase disrupts pod and seed development in Brassica napus L. Food Energy Secur. 10:e262. doi: 10.1002/fes3.262 DOI
Chen W. W., Takahashi N., Hirata Y., Ronald J., Porco S., Davis S. J., et al. . (2020b). A mobile ELF4 delivers circadian temperature information from shoots to roots. Nat. Plants 6, 416–426. doi: 10.1038/s41477-020-0634-2, PMID: PubMed DOI PMC
Chen X., Yoong F., O’Neill C. M., Penfield S. (2021). Temperature during seed maturation controls seed vigour through ABA breakdown in the endosperm and causes a passive effect on DOG1 mRNA levels during entry into quiescence. New Phytol. 232, 1311–1322. doi: 10.1111/nph.17646, PMID: PubMed DOI
Cherif A., Dubacq J., Mache R., Oursel A., Tremolieres A. (1975). Biosynthesis of α-linolenic acid by desaturation of oleic and linoleic acids in several organs of higher and lower plants and in algae. Phytochemistry 14, 703–706. doi: 10.1016/0031-9422(75)83018-4 DOI
Cruz T. M. D., Carvalho R. F., Richardson D. N., Duque P. (2014). Abscisic acid (ABA) regulation of Arabidopsis SR protein gene expression. Int. J. Mol. Sci. 15, 17541–17564. doi: 10.3390/ijms151017541, PMID: PubMed DOI PMC
Das S., Krishnan P., Nayak M., Ramakrishnan B. (2014). High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environ. Exp. Bot. 101, 36–46. doi: 10.1016/j.envexpbot.2014.01.004 DOI
Devasirvatham V., Gaur P. M., Mallikarjuna N., Raju T. N., Trethowan R. M., Tan D. K. Y. (2013). Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crop Res. 142, 9–19. doi: 10.1016/j.fcr.2012.11.011 DOI
Doyle M. R., Davis S. J., Bastow R. M., McWatters H. G., Kozma-Bognár L., Nagy F., et al. . (2002). The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419, 74–77. doi: 10.1038/nature00954, PMID: PubMed DOI
Elferjani R., Soolanayakanahally R. (2018). Canola responses to drought, heat, and combined stress: shared and specific effects on carbon assimilation, seed yield, and oil composition. Front. Plant Sci. 9:1224. doi: 10.3389/fpls.2018.01224, PMID: PubMed DOI PMC
Eom S. H., Baek S.-A., Kim J. K., Hyun T. K. (2018). Transcriptome analysis in chinese cabbage (Brassica rapa ssp. pekinensis) provides the role of glucosinolate metabolism in response to drought stress. Molecules 23:1186. doi: 10.3390/molecules23051186, PMID: PubMed DOI PMC
Ezer D., Jung J.-H., Lan H., Biswas S., Gregoire L., Box M. S., et al. . (2017). The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nat. Plants 3:17087. doi: 10.1038/nplants.2017.87, PMID: PubMed DOI PMC
Figueiredo D. D., Batista R. A., Roszak P. J., Hennig L., Köhler C. C. (2016). Auxin production in the endosperm drives seed coat development in Arabidopsis. elife 5:e20542. doi: 10.7554/elife.20542 PubMed DOI PMC
Figueiredo D. D., Batista R. A., Roszak P. J., Köhler C. C. (2015). Auxin production couples endosperm development to fertilization. Nat. Plants 1:15184. doi: 10.1038/nplants.2015.184, PMID: PubMed DOI
Filichkin S. A., Cumbie J. S., Dharmawardhana P., Jaiswal P., Chang J. H., Palusa S. G., et al. . (2015). Environmental stresses modulate abundance and timing of alternatively spliced circadian transcripts in Arabidopsis. Mol. Plant 8, 207–227. doi: 10.1016/j.molp.2014.10.011, PMID: PubMed DOI
Food and Agriculture Organization of the United Nations (2020). Available at: http://www.fao.org/faostat (Accessed January 2021).
Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., et al. . (2003). Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147–153. doi: 10.1038/nature02085, PMID: PubMed DOI
Gan Y., Angadi S., Cutforth H., Potts D., Angadi V., McDonald C. (2004). Canola and mustard response to short periods of temperature and water stress at different developmental stages. Can. J. Plant Sci. 84, 697–704. doi: 10.4141/P03-109 DOI
Groot S. P. C., Karssen C. M. (1992). Dormancy and germination of abscisic acid-deficient tomato seeds: studies with the sitiens mutant. Plant Physiol. 99, 952–958. doi: 10.1104/pp.99.3.952, PMID: PubMed DOI PMC
Guo Y., Wu W., Du M., Liu X., Wang J., Bryant C. R. (2019). Modeling climate change impacts on rice growth and yield under global warming of 1.5 and 2.0°C in the Pearl River Delta, China. Atmosphere 10:567. doi: 10.3390/atmos10100567 DOI
Hardtke C. S., Berleth T. (1998). The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 17, 1405–1411. doi: 10.1093/emboj/17.5.1405, PMID: PubMed DOI PMC
Hatzig S. V., Nuppenau J.-N., Snowdon R. J., Schießl S. V. (2018). Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.). BMC Plant Biol. 18:297. doi: 10.1186/s12870-018-1531-y, PMID: PubMed DOI PMC
Hays D. B., Do J. H., Mason R. E., Morgan G., Finlayson S. A. (2007). Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Sci. 172, 1113–1123. doi: 10.1016/j.plantsci.2007.03.004 DOI
Hu X.-J., Chen D., Mclntyre C. L., Dreccer M. F., Zhang Z.-B., Drenth J., et al. . (2018). Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. Plant Cell Environ. 41, 79–98. doi: 10.1111/pce.12957, PMID: PubMed DOI
Hu X., Liu R., Li Y., Wang W., Tai F., Xue R., et al. . (2010). Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul. 60, 225–235. doi: 10.1007/s10725-009-9436-2 DOI
Huang S., Gruber S., Stockmann F., Claupein W. (2016). Dynamics of dormancy during seed development of oilseed rape (Brassica napus L.). Seed Sci. Res. 26, 245–253. doi: 10.1017/s0960258516000118 DOI
Huang R., Liu Z., Xing M., Yang Y., Wu X., Liu H., et al. . (2019). Heat stress suppresses Brassica napus seed oil accumulation by inhibition of photosynthesis and BnWRI1 pathway. Plant Cell Physiol. 60, 1457–1470. doi: 10.1093/pcp/pcz052, PMID: PubMed DOI
Impa S. M., Perumal R., Bean S. R., Sunoj V. S. J., Jagadish S. V. K. (2019). Water deficit and heat stress induced alterations in grain physico-chemical characteristics and micronutrient composition in field grown grain sorghum. J. Cereal Sci. 86, 124–131. doi: 10.1016/j.jcs.2019.01.013 DOI
ISO 659 (2009). Oilseeds - Determination of oil content (Reference method). ICS 67.200.20. 4th Edn. July 2009. International Organization for Standardization.
ISO 665 (2000). Oilseeds - Determination of moisture and volatile matter content. ICS : 67.200.20. 2nd Edn. September 2000. International Organization for Standardization.
ISO 9167-1 (1992). Rapeseed - Determination of glucosinolates content - Part 1: Method using high-performance liquid chromatography. ICS : 67.200.20. 1st Edn. July 1992. International Organization for Standardization.
James A. B., Syed N. H., Bordage S., Marshall J., Nimmo G. A., Jenkins G. I., et al. . (2012). Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 24, 961–981. doi: 10.1105/tpc.111.093948, PMID: PubMed DOI PMC
Jiang Y., Lahlali R., Karunakaran C., Warkentin T. D., Davis A. R., Bueckert R. A. (2019). Pollen, ovules and pollination in pea: success, failure and resilience in heat. Plant Cell Environ. 42, 354–372. doi: 10.1111/pce.13427, PMID: PubMed DOI
Jiang J., Liu X., Liu C., Liu G., Li S., Wang L. (2017). Integrating omics and alternative splicing reveals insights into grape response to high temperature. Plant Physiol. 173, 1502–1518. doi: 10.1104/pp.16.01305, PMID: PubMed DOI PMC
John S., Olas J. J., Roeber B. M. (2021). Regulation of alternative splicing in response to temperature variation in plants. J. Exp. Bot. 72, 6150–6163. doi: 10.1093/jxb/erab232, PMID: PubMed DOI PMC
Jumrani K., Bhatia V. S. (2014). Impact of elevated temperatures on growth and yield of chickpea (Cicer arietinum L.). Field Crop Res. 164, 90–97. doi: 10.1016/j.fcr.2014.06.003 DOI
Kanno Y., Jikumaru Y., Hanada A., Nambara E., Abrams S. R., Kamiya Y., et al. . (2010). Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol. 51, 1988–2001. doi: 10.1093/pcp/pcq158, PMID: PubMed DOI
Kaur H., Ozga J. A., Reinecke D. M. (2020). Balancing of hormonal biosynthesis and catabolism pathways, a strategy to ameliorate the negative effects of heat stress on reproductive growth. Plant Cell Environ. 44, 1486–1503. doi: 10.1111/pce.13820, PMID: PubMed DOI
Koscielny C. B., Hazebroek J., Duncan R. W. (2018). Phenotypic and metabolic variation among spring Brassica napus genotypes during heat stress. Crop Pasture Sci. 69, 284–295. doi: 10.1071/CP17259 DOI
Kulichová K., Kumar V., Steinbachová L., Klodová B., Timofejeva L., Juříček M., et al. . (2020). PRP8A and PRP8B spliceosome subunits act coordinately to control pollen tube attraction in Arabidopsis thaliana. Development 147:dev186742. doi: 10.1242/dev.186742, PMID: PubMed DOI
Kumar S. V., Lucyshyn D., Jaeger K. E., Alós E., Alvey E., Harberd N. P., et al. . (2012). PHYTOCHROME INTERACTING FACTOR4 controls the thermosensory activation of flowering. Nature 484, 242–245. doi: 10.1038/nature10928, PMID: PubMed DOI PMC
Lefebvre V., North H., Frey A., Sotta B., Seo M. M., Okamoto M., et al. . (2006). Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J. 45, 309–319. doi: 10.1111/j.1365-313x.2005.02622.x, PMID: PubMed DOI
Lesk C., Rowhani P., Ramankutty N. (2016). Influence of extreme weather disasters on global crop production. Nature 529, 84–87. doi: 10.1038/nature16467, PMID: PubMed DOI
Li M., Cao L., Mwimba M., Zhou Y., Li L., Zhou M., et al. . (2019). Comprehensive mapping of abiotic stress inputs into the soybean circadian clock. Proc. Natl. Acad. Sci. U.S.A. 116, 23840–23849. doi: 10.1073/pnas.1708508116, PMID: PubMed DOI PMC
Li H., Liu S.-S., Yi C.-Y., Wang F., Zhou J., Xia X.-J., et al. . (2014). Hydrogen peroxide mediates abscisic acid-induced HSP70 accumulation and heat tolerance in grafted cucumber plants. Plant Cell Environ. 37, 2768–2780. doi: 10.1111/pce.12360, PMID: PubMed DOI
Lin C.-J., Li C.-Y., Lin S.-K., Yang F.-H., Huang J.-J., Liu Y.-H., et al. . (2010). Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). J. Agric. Food Chem. 58, 10545–10552. doi: 10.1021/jf101575j, PMID: PubMed DOI
Lin K., Zhao H., Gan S., Li G. (2019). Arabidopsis ELF4-like proteins EFL1 and EFL3 influence flowering time. Gene 700, 131–138. doi: 10.1016/j.gene.2019.03.047, PMID: PubMed DOI
Liu B., Asseng S., Müller C., Ewert F., Elliott J., Lobell D. B., et al. . (2016). Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Chang. 6, 1130–1136. doi: 10.1038/nclimate3115 DOI
Liu L., Liu F., Chu J., Yi X., Fan W., Tang T., et al. . (2019). A transcriptome analysis reveals a role for the indole GLS-linked auxin biosynthesis in secondary dormancy in rapeseed (Brassica napus L.). BMC Plant Biol. 19:264. doi: 10.1186/s12870-019-1866-z, PMID: PubMed DOI PMC
Liu X., Wang X., Wang X., Gao J., Luo N., Meng Q., et al. . (2020). Dissecting the critical stage in the response of maize kernel set to individual and combined drought and heat stress around flowering. Environ. Exp. Bot. 179:104213. doi: 10.1016/j.envexpbot.2020.104213 DOI
Liu X., Zhang H., Zhao Y., Feng Z., Li Q., Yang H.-Q., et al. . (2013). Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 110, 15485–15490. doi: 10.1073/pnas.1304651110, PMID: PubMed DOI PMC
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25, 402–408. doi: 10.1006/meth.2001.1262 PubMed DOI
Lu W., Tang X., Huo Y., Xu R., Qi S., Huang J., et al. . (2012). Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene 503, 65–74. doi: 10.1016/j.gene.2012.04.042, PMID: PubMed DOI
Ludwig-Müller J., Krishna P., Forreiter C. (2000). A glucosinolate mutant of Arabidopsis is thermosensitive and defective in cytosolic Hsp90 expression after heat stress. Plant Physiol. 123, 949–958. doi: 10.1104/pp.123.3.949, PMID: PubMed DOI PMC
Luo Q. (2011). Temperature thresholds and crop production: a review. Clim. Chang. 109, 583–598. doi: 10.1007/s10584-011-0028-6 DOI
Marutani M., Sheffer R. D., Kamemoto H. (1993). Cytological analysis of Anthurium andraeanum (Araceae), its related taxa and their hybrids. Am. J. Bot. 80, 93–103. doi: 10.1002/j.1537-2197.1993.tb13772 DOI
McCulloch C. E., Neuhaus J. M. (2005). “Generalized linear mixed models,” in Encyclopedia of Biostatistics. eds. Armitage P., Colton T. (Chischester, UK: Wiley; ).
McWatters H. G., Kolmos E., Hall A., Doyle M. R., Amasino R. M., Gyula P., et al. . (2007). ELF4 is required for oscillatory properties of the circadian clock. Plant Physiol. 144, 391–401. doi: 10.1104/pp.107.096206, PMID: PubMed DOI PMC
Mellor N., Band L. R., Pencík A., Novak O., Rashed A., Holman T., et al. . (2016). Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proc. Natl. Acad. Sci. U.S.A. 113, 11022–11027. doi: 10.1073/pnas.1604458113, PMID: PubMed DOI PMC
Morrison M. J., McVetty P. B. E., Shaykewich C. F. (1989). The determination and verification of a baseline temperature for the growth of Westar summer rape. Can. J. Plant Sci. 69, 455–464. doi: 10.4141/cjps89-057 DOI
Morrison M. J., Stewart D. W. (2002). Heat stress during flowering in summer brassica. Crop Sci. 42, 797–803. doi: 10.2135/cropsci2002.7970 DOI
Pěnčík A., Casanova-Sáez R., Pilařová V., Žukauskaitė A., Pinto R., Micol J. L., et al. . (2018). Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J. Exp. Bot. 69, 2569–2579. doi: 10.1093/jxb/ery084, PMID: PubMed DOI PMC
Peng S., Huang J., Sheehy J. E., Laza R. C., Visperas R. M., Zhong X., et al. . (2004). Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. U.S.A. 101, 9971–9975. doi: 10.1073/pnas.0403720101, PMID: PubMed DOI PMC
Pérez-Alonso M.-M., Ortiz-García P., Moya-Cuevas J., Lehmann T., Sánchez-Parra B., Björk R. G., et al. . (2021). Endogenous indole-3-acetamide levels contribute to the crosstalk between auxin and abscisic acid, and trigger plant stress responses in Arabidopsis. J. Exp. Bot. 72, 459–475. doi: 10.1093/jxb/eraa485, PMID: PubMed DOI PMC
Pfaffl M. W., Tichopad A., Prgomet C., Neuvians T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509–515. doi: 10.1023/b:bile.0000019559.84305.47 PubMed DOI
Polowick P. L., Sawhney V. K. (1988). High-temperature induced male and female sterility in canola (Brassica napus L). Ann. Bot. 62, 83–86. doi: 10.1093/oxfordjournals.aob.a087639 DOI
Prigge M. J., Platre M., Kadakia N., Zhang Y., Greenham K., Szutu W., et al. . (2020). Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions. elife 9:2992. doi: 10.7554/elife.54740 PubMed DOI PMC
Rademacher E. H., Lokerse A. S., Schlereth A., Peris C. L., Bayer M., Kientz M., et al. . (2012). Different auxin response machineries control distinct cell fates in the early plant embryo. Dev. Cell 22, 211–222. doi: 10.1016/j.devcel.2011.10.026, PMID: PubMed DOI
Radoeva T., Lokerse A. S., Peris C. L., Wendrich J. R., Xiang D., Liao C.-Y., et al. . (2019). A robust auxin response network controls embryo and suspensor development through a basic helix loop helix transcriptional module. Plant Cell 31, 52–67. doi: 10.1105/tpc.18.00518, PMID: PubMed DOI PMC
Rae G. M., Uversky V. N., David K. M., Wood M. (2014). DRM1 and DRM2 expression regulation: potential role of splice variants in response to stress and environmental factors in Arabidopsis. Mol. Gen. Genomics. 289, 317–332. doi: 10.1007/s00438-013-0804-2, PMID: PubMed DOI
Rao S.-Q., Chen X.-Q., Wang K.-H., Zhu Z.-J., Yang J., Zhu B. (2021). Effect of short-term high temperature on the accumulation of glucosinolates in Brassica rapa. Plant Physiol. Biochem. 161, 222–233. doi: 10.1016/j.plaphy.2021.02.013, PMID: PubMed DOI
R Core Team (2014). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: http://www.R-project.org/ (Accessed November 20, 2020).
Robert H. S., Grones P., Stepanova A. N., Robles L. M., Lokerse A. S., Alonso J. M., et al. . (2013). Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr. Biol. 23, 2506–2512. doi: 10.1016/j.cub.2013.09.039, PMID: PubMed DOI
Robert H. S., Grunewald W., Sauer M., Cannoot B., Soriano M., Swarup R., et al. . (2015). Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development 142, 702–711. doi: 10.1242/dev.115832, PMID: PubMed DOI
Robert H. S., Park C., Gutièrrez C. L., Wójcikowska B., Pencík A., Novak O., et al. . (2018). Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nat. Plants 4, 548–553. doi: 10.1038/s41477-018-0204-z, PMID: PubMed DOI PMC
RStudio Team (2019). RStudio: Integrated Development for R. RStudio, PBC, Inc. Boston, MA, USA. Available at: http://www.rstudio.com/ (Accessed November 20, 2020).
Russell (2020). Emmeans: Estimated Marginal Means, Aka Least-Squares Means, R Package Version 1.4.5; 2020. Available at: https://cran.r-project.org/web/packages/emmeans/index.html (Accessed December 20, 2020).
Salehin M., Li B., Tang M., Katz E., Song L., Ecker J. R., et al. . (2019). Auxin-sensitive aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nat. Commun. 10, 4021–4029. doi: 10.1038/s41467-019-12002-1, PMID: PubMed DOI PMC
Sanchez A., Shin J., Davis S. J. (2011). Abiotic stress and the plant circadian clock. Plant Signal. Behav. 6, 223–231. doi: 10.4161/psb.6.2.14893, PMID: PubMed DOI PMC
Sánchez-Parra B., Pérez-Alonso M.-M., Ortiz-García P., Moya-Cuevas J., Hentrich M., Pollmann S. (2021). Accumulation of the auxin precursor indole-3-acetamide curtails growth through the repression of ribosome-biogenesis and development-related transcriptional networks. Int. J. Mol. Sci. 22:2040. doi: 10.3390/ijms22042040, PMID: PubMed DOI PMC
Seaton D. D., Toledo-Ortiz G., Ganpudi A., Kubota A., Imaizumi T., Halliday K. J. (2018). Dawn and photoperiod sensing by phytochrome A. Proc. Natl. Acad. Sci. U.S.A. 115, 10523–10528. doi: 10.1073/pnas.1803398115, PMID: PubMed DOI PMC
Seo M. M., Hanada A., Kuwahara A., Endo A., Okamoto M., Yamauchi Y., et al. . (2006). Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J. 48, 354–366. doi: 10.1111/j.1365-313x.2006.02881.x, PMID: PubMed DOI
Singh R. P., Prasad P. V. V., Sunita K., Giri S. N., Reddy K. R. (2007). Influence of high temperature and breeding for heat tolerance in cotton: a review. Adv. Agron. 93, 313–385. doi: 10.1016/S0065-2113(06)93006-5 DOI
Singh A. K., Singh M. K., Singh V., Singh R., Raghuvanshi T., Singh C. (2017). Debilitation in tomato (Solanum lycopersicum L.) as result of heat stress. J. Pharmacogn. Phytochem. 6, 1917–1922.
Slane D., Lee C. H., Kolb M., Dent C., Miao Y., Franz-Wachtel M., et al. . (2020). The integral spliceosomal component CWC15 is required for development in Arabidopsis. Sci. Rep. 10:13336. doi: 10.1038/s41598-020-70324-3, PMID: PubMed DOI PMC
Song Y. H., Kubota A., Kwon M. S., Covington M. F., Lee N., Taagen E. R., et al. . (2018). Molecular basis of flowering under natural long-day conditions in Arabidopsis. Nat. Plants 4, 824–835. doi: 10.1038/s41477-018-0253-3, PMID: PubMed DOI PMC
Stavang J. A., Gallego-Bartolomé J., Gómez M. D., Yoshida S., Asami T., Olsen J. E., et al. . (2009). Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J. 60, 589–601. doi: 10.1111/j.1365-313x.2009.03983.x, PMID: PubMed DOI
Sugliani M., Brambilla V., Clerkx E. J. M., Koornneef M., Soppe W. J. J. (2010). The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis. Plant Cell 22, 1936–1946. doi: 10.1105/tpc.110.074674, PMID: PubMed DOI PMC
Talukder A. S. M. H. M., McDonald G. K., Gill G. S. (2014). Effect of short-term heat stress prior to flowering and early grain set on the grain yield of wheat. Field Crop Res. 160, 54–63. doi: 10.1016/j.fcr.2014.01.013 DOI
Torres C. A., Sepúlveda G., Kahlaoui B. (2017). Phytohormone interaction modulating fruit responses to photooxidative and heat stress on apple (Malus domestica Borkh.). Front. Plant Sci. 8:2129. doi: 10.3389/fpls.2017.02129, PMID: PubMed DOI PMC
Tuteja N. (2007). Abscisic acid and abiotic stress signaling. Plant Signal. Behav. 2, 135–138. doi: 10.4161/psb.2.3.4156, PMID: PubMed DOI PMC
Vandesompele J., Preter K. D., Pattyn F., Poppe B., Roy N. V., Paepe A. D., et al. . (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:RESEARCH0034. doi: 10.1186/gb-2002-3-7-research0034, PMID: PubMed DOI PMC
Verma S., Attuluri V. P. S., Robert H. S. (2021). An essential function for auxin in embryo development. CSH Perspect. Biol. 13:a039966. doi: 10.1101/cshperspect.a039966, PMID: PubMed DOI PMC
Vishwakarma K., Upadhyay N., Kumar N., Yadav G., Singh J., Mishra R. K., et al. . (2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front. Plant Sci. 8:161. doi: 10.3389/fpls.2017.00161, PMID: PubMed DOI PMC
Vu L. D., Xu X., Gevaert K., Smet I. D. (2019). Developmental plasticity at high temperature. Plant Physiol. 181, 399–411. doi: 10.1104/pp.19.00652, PMID: PubMed DOI PMC
Wojtaczka P., Ciarkowska A., Starzynska E., Ostrowski M. (2022). The GH3 amidosynthetases family and their role in metabolic crosstalk modulation of plant signaling compounds. Phytochemistry 194:113039. doi: 10.1016/j.phytochem.2021.113039, PMID: PubMed DOI
Wu C., Cui K., Wang W., Li Q., Fahad S., Hu Q., et al. . (2016). Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Sci. Rep. 6, 34978–34914. doi: 10.1038/srep34978, PMID: PubMed DOI PMC
Young L. W., Wilen R. W., Bonham-Smith P. C. (2004). High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Bot. 55, 485–495. doi: 10.1093/jxb/erh038, PMID: PubMed DOI
Zhang H., Liu Y., Wen F., Yao D., Wang L., Guo J., et al. . (2014). A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice. J. Exp. Bot. 65, 5795–5809. doi: 10.1093/jxb/eru313, PMID: PubMed DOI PMC
Zhao C., Liu B., Piao S., Wang X., Lobell D. B., Huang Y., et al. . (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. U.S.A. 114, 9326–9331. doi: 10.1073/pnas.1701762114, PMID: PubMed DOI PMC