A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P40 OD010997
NIH HHS - United States
R01 HD084409
NICHD NIH HHS - United States
PubMed
33166278
PubMed Central
PMC7652241
DOI
10.1371/journal.pgen.1009121
PII: PGENETICS-D-20-00636
Knihovny.cz E-zdroje
- MeSH
- genetická zdatnost MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví genetika MeSH
- rekombinace genetická MeSH
- sexuální diferenciace genetika MeSH
- Xenopus genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Ghana MeSH
In many species, sexual differentiation is a vital prelude to reproduction, and disruption of this process can have severe fitness effects, including sterility. It is thus interesting that genetic systems governing sexual differentiation vary among-and even within-species. To understand these systems more, we investigated a rare example of a frog with three sex chromosomes: the Western clawed frog, Xenopus tropicalis. We demonstrate that natural populations from the western and eastern edges of Ghana have a young Y chromosome, and that a male-determining factor on this Y chromosome is in a very similar genomic location as a previously known female-determining factor on the W chromosome. Nucleotide polymorphism of expressed transcripts suggests genetic degeneration on the W chromosome, emergence of a new Y chromosome from an ancestral Z chromosome, and natural co-mingling of the W, Z, and Y chromosomes in the same population. Compared to the rest of the genome, a small sex-associated portion of the sex chromosomes has a 50-fold enrichment of transcripts with male-biased expression during early gonadal differentiation. Additionally, X. tropicalis has sex-differences in the rates and genomic locations of recombination events during gametogenesis that are similar to at least two other Xenopus species, which suggests that sex differences in recombination are genus-wide. These findings are consistent with theoretical expectations associated with recombination suppression on sex chromosomes, demonstrate that several characteristics of old and established sex chromosomes (e.g., nucleotide divergence, sex biased expression) can arise well before sex chromosomes become cytogenetically distinguished, and show how these characteristics can have lingering consequences that are carried forward through sex chromosome turnovers.
CSIR Forestry Research Institute of Ghana Kumasi Ghana
Department of Biology McMaster University 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
Department of Cell Biology Charles University 7 Vinicna Street Prague 12843 Czech Republic
Zobrazit více v PubMed
Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman TL, et al. Sex determination: Why so many ways of doing it? PLoS Biology. 2014;12(7):e1001899 10.1371/journal.pbio.1001899 PubMed DOI PMC
Lahn BT, Page DC. Four evolutionary strata on the human X chromosome. Science. 1999;286(5441):964–967. 10.1126/science.286.5441.964 PubMed DOI
Zhou Q, Zhang J, Bachtrog D, An N, Huang Q, Jarvis ED, et al. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science. 2014;346(6215):1246338 10.1126/science.1246338 PubMed DOI PMC
Matsubara K, Tarui H, Toriba M, Yamada K, Nishida-Umehara C, Agata K, et al. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proceedings of the National Academy of Sciences. 2006;103(48):18190–18195. 10.1073/pnas.0605274103 PubMed DOI PMC
Bachtrog D. Y-chromosome evolution: Emerging insights into processes of Y-chromosome degeneration. Nature Reviews Genetics. 2013;14(2):113–124. 10.1038/nrg3366 PubMed DOI PMC
Wright AE, Dean R, Zimmer F, Mank JE. How to make a sex chromosome. Nature Communications. 2016;7(1):1–8. 10.1038/ncomms12087 PubMed DOI PMC
Deakin J. Chromosome evolution in marsupials. Genes. 2018;9(2):72 10.3390/genes9020072 PubMed DOI PMC
Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, et al. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genetics. 2012;8(7):e1002798 10.1371/journal.pgen.1002798 PubMed DOI PMC
Adolfsson S, Ellegren H. Lack of dosage compensation accompanies the arrested stage of sex chromosome evolution in ostriches. Molecular Biology and Evolution. 2013;30(4):806–810. 10.1093/molbev/mst009 PubMed DOI PMC
Perrin N. Sex reversal: A fountain of youth for sex chromosomes? Evolution: International Journal of Organic Evolution. 2009;63(12):3043–3049. 10.1111/j.1558-5646.2009.00837.x PubMed DOI
Vicoso B, Kaiser VB, Bachtrog D. Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution. Proceedings of the National Academy of Sciences. 2013;110(16):6453–6458. 10.1073/pnas.1217027110 PubMed DOI PMC
Bull JJ. Evolution of sex determining mechanisms. The Benjamin/Cummings Publishing Company, Inc; 1983.
Volff JN, Nanda I, Schmid M, Schartl M. Governing sex determination in fish: Regulatory putsches and ephemeral dictators. Sexual Development. 2007;1(2):85–99. 10.1159/000100030 PubMed DOI
Miura I. An evolutionary witness: The frog Rana rugosa underwent change of heterogametic sex from XY male to ZW female. Sexual Development. 2007;1(6):323–331. 10.1159/000111764 PubMed DOI
Jeffries DL, Lavanchy G, Sermier R, Sredl MJ, Miura I, Borzée A, et al. A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nature Communications. 2018;9(1):4088 10.1038/s41467-018-06517-2 PubMed DOI PMC
Saunders PA, Neuenschwander S, Perrin N. Impact of deleterious mutations, sexually antagonistic selection, and mode of recombination suppression on transitions between male and female heterogamety. Heredity. 2019;123(3):419–428. 10.1038/s41437-019-0225-z PubMed DOI PMC
Vicoso B. Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nature Ecology and Evolution. 2019; p. 1–10. PubMed
Myosho T, Takehana Y, Hamaguchi S, Sakaizumi M. Turnover of sex chromosomes in celebensis group medaka fishes. G3: Genes, Genomes, Genetics. 2015;5(12):2685–2691. 10.1534/g3.115.021543 PubMed DOI PMC
Tennessen JA, Wei N, Straub SC, Govindarajulu R, Liston A, Ashman TL. Repeated translocation of a gene cassette drives sex-chromosome turnover in strawberries. PLoS Biology. 2018;16(8):e2006062 10.1371/journal.pbio.2006062 PubMed DOI PMC
Yano A, Nicol B, Jouanno E, Quillet E, Fostier A, Guyomard R, et al. The sexually dimorphic on the Y-chromosome gene (sdY) is a conserved male-specific Y-chromosome sequence in many salmonids. Evolutionary applications. 2013;6(3):486–496. 10.1111/eva.12032 PubMed DOI PMC
Blaser O, Grossen C, Neuenschwander S, Perrin N. Sex-chromosome turnovers induced by deleterious mutation load. Evolution: International Journal of Organic Evolution. 2013;67(3):635–645. PubMed
Blaser O, Neuenschwander S, Perrin N. Sex-chromosome turnovers: The hot-potato model. The American Naturalist. 2014;183(1):140–146. 10.1086/674026 PubMed DOI
Evans BJ, Pyron RA, Wiens JJ. Polyploidization and sex chromosome evolution in amphibians In: Polyploidy and Genome Evolution. Springer; 2012. p. 385–410.
Pennell MW, Mank JE, Peichel CL. Transitions in sex determination and sex chromosomes across vertebrate species. Molecular Ecology. 2018;27(19):3950–3963. 10.1111/mec.14540 PubMed DOI PMC
Cauret CM, Gansauge MT, Tupper AS, Furman BL, Knytl M, Song XY, et al. Developmental systems drift and the drivers of sex chromosome evolution. Molecular Biology and Evolution. 2020;37(3):799–810. 10.1093/molbev/msz268 PubMed DOI
Green DM, Zeyl CW, Sharbel TF. The evolution of hypervariable sex and supernumerary (B) chromosomes in the relict New Zealand frog, Leiopelma hochstetteri. Journal of Evolutionary Biology. 1993;6(3):417–441. 10.1046/j.1420-9101.1993.6030417.x DOI
Roco ÁS, Olmstead AW, Degitz SJ, Amano T, Zimmerman LB, Bullejos M. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proceedings of the National Academy of Sciences. 2015;112(34):E4752–E4761. 10.1073/pnas.1505291112 PubMed DOI PMC
Olmstead AW, Lindberg-Livingston A, Degitz SJ. Genotyping sex in the amphibian, Xenopus (Silurana) tropicalis, for endocrine disruptor bioassays. Aquatic Toxicology. 2010;98(1):60–66. 10.1016/j.aquatox.2010.01.012 PubMed DOI
Mitros T, Lyons J, Session A, Jenkins J, Shu S, Kwon T, et al. A chromosome-scale genome assembly and dense genetic map for Xenopus tropicalis. Developmental Biology. 2019. PubMed
Tymowska J. Polyploidy and cytogenetic variation in frogs of the genus Xenopus. Amphibian cytogenetics and evolution. 1991;259:297.
Bewick AJ, Chain FJ, Zimmerman LB, Sesay A, Gilchrist MJ, Owens ND, et al. A large pseudoautosomal region on the sex chromosomes of the frog Silurana tropicalis. Genome Biology and Evolution. 2013;5(6):1087–1098. 10.1093/gbe/evt073 PubMed DOI PMC
Evans BJ, Gansauge MT, Stanley EL, Furman BL, Cauret CM, Ofori-Boateng C, et al. Xenopus fraseri: Mr. Fraser, where did your frog come from? PloS One. 2019;14(9). PubMed PMC
Grainger RM. Xenopus tropicalis as a model organism for genetics and genomics: Past, present, and future In: Xenopus Protocols. Springer; 2012. p. 3–15. PubMed PMC
Blum M, Ott T. Xenopus: an undervalued model organism to study and model human genetic disease. Cells Tissues Organs. 2018;205(5-6):303–313. 10.1159/000490898 PubMed DOI
Showell C, Conlon FL. The Western clawed frog (Xenopus tropicalis): An emerging vertebrate model for developmental genetics and environmental toxicology. Cold Spring Harbor Protocols. 2009;2009(9):pdb–emo131. 10.1101/pdb.emo131 PubMed DOI PMC
Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, Nishida-Umehara C, et al. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proceedings of the National Academy of Sciences. 2008;105(7):2469–2474. 10.1073/pnas.0712244105 PubMed DOI PMC
Song XY, Furman BL, Premachandra T, Knytl M, Cauret CMS, Wasonga DV, et al. Sex-biased expression of sex-linked transcripts in African clawed frogs (Xenopus). Philosophical Transactions of the Royal Society B;in press. PubMed PMC
Furman BLS, Evans BJ. Sequential turnovers of sex chromosomes in African clawed frogs (Xenopus) suggest some genomic regions are good at sex determination. G3: Genes|Genomes|Genetics. 2016;6(11):3625–3633. 10.1534/g3.116.033423 PubMed DOI PMC
Tinsley R, Loumont C, Kobel H. Geographical distribution and ecology In: Tinsley R, Kobel H, editors. The Biology of Xenopus. Oxford: Clarendon Press; 1996. p. 35–41.
Miller CS, Gosling WD. Quaternary forest associations in lowland tropical West Africa. Quaternary Science Reviews. 2014;84:7–25. 10.1016/j.quascirev.2013.10.027 DOI
Demenou BB, Doucet JL, Hardy OJ. History of the fragmentation of the African rain forest in the Dahomey Gap: Insight from the demographic history of Terminalia superba. Heredity. 2018;120(6):547–561. 10.1038/s41437-017-0035-0 PubMed DOI PMC
Düsing K. The regulation of the gender ratio in the multiplication of the people, animals and plants. Fischer; 1884.
Fisher RA. The genetical theory of natural selection. The Clarendon Press; 1958.
Hamilton WD. Extraordinary sex ratios. Science. 1967;156(3774):477–488. 10.1126/science.156.3774.477 PubMed DOI
Vuilleumier S, Lande R, Van Alphen J, Seehausen O. Invasion and fixation of sex-reversal genes. Journal of Evolutionary Biology. 2007;20(3):913–920. 10.1111/j.1420-9101.2007.01311.x PubMed DOI
Bateman A, Anholt B. Maintenance of polygenic sex determination in a fluctuating environment: an individual-based model. Journal of Evolutionary Biology. 2017;30(5):915–925. 10.1111/jeb.13054 PubMed DOI
Bewick AJ, Anderson DW, Evans BJ. Evolution of the closely related, sex-related genes DM-W and DMRT1 in African clawed frogs (Xenopus). Evolution: International Journal of Organic Evolution. 2011;65(3):698–712. 10.1111/j.1558-5646.2010.01163.x PubMed DOI
Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, et al. The genome of the Western Clawed Frog Xenopus tropicalis. Science. 2010;328(5978):633–636. 10.1126/science.1183670 PubMed DOI PMC
Chain FJ. Sex-biased expression of young genes in Silurana (Xenopus) tropicalis. Cytogenetic and Genome Research. 2015;145(3-4):265–277. 10.1159/000430942 PubMed DOI
Kitano J, Kakioka R, Ishikawa A, Toyoda A, Kusakabe M. Differences in the contributions of sex-linkage and androgen regulation to sex-biased gene expression in juvenile and adult sticklebacks. Journal of Evolutionary Biology. 2020;. 10.1111/jeb.13662 PubMed DOI
Bull JJ, Charnov EL. Changes in the heterogametic mechanism of sex determination. Heredity. 1977;39(1):1 PubMed
Charlesworth B, Coyne JA, Barton NH. The relative rates of evolution of sex chromosomes and autosomes. The American Naturalist. 1987;130(1):113–146. 10.1086/284701 DOI
Vicoso B, Charlesworth B. Effective population size and the faster-X effect: an extended model. Evolution: International Journal of Organic Evolution. 2009;63(9):2413–2426. 10.1111/j.1558-5646.2009.00719.x PubMed DOI
Malcom JW, Kudra RS, Malone JH. The sex chromosomes of frogs: Variability and tolerance offer clues to genome evolution and function. Journal of Genomics. 2014;2:68 10.7150/jgen.8044 PubMed DOI PMC
Furman BL, Dang UJ, Evans BJ, Golding GB. Divergent subgenome evolution after allopolyploidization in African clawed frogs (Xenopus). Journal of Evolutionary Biology. 2018;31(12):1945–1958. 10.1111/jeb.13391 PubMed DOI
Ottolini CS, Newnham LJ, Capalbo A, Natesan SA, Joshi HA, Cimadomo D, et al. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nature Genetics. 2015;47(7):727 10.1038/ng.3306 PubMed DOI PMC
Sardell JM, Cheng C, Dagilis AJ, Ishikawa A, Kitano J, Peichel CL, et al. Sex differences in recombination in sticklebacks. G3: Genes, Genomes, Genetics. 2018;8(6):1971–1983. 10.1534/g3.118.200166 PubMed DOI PMC
Brelsford A, Dufresnes C, Perrin N. High-density sex-specific linkage maps of a European tree frog (Hyla arborea) identify the sex chromosome without information on offspring sex. Heredity. 2016;116(2):177 10.1038/hdy.2015.83 PubMed DOI PMC
Berset-Brändli L, Jaquiéry J, Broquet T, Ulrich Y, Perrin N. Extreme heterochiasmy and nascent sex chromosomes in European tree frogs. Proceedings of the Royal Society B: Biological Sciences. 2008;275(1642):1577–1585. 10.1098/rspb.2008.0298 PubMed DOI PMC
Theodosiou L, McMillan W, Puebla O. Recombination in the eggs and sperm in a simultaneously hermaphroditic vertebrate. Proceedings of the Royal Society B: Biological Sciences. 2016;283(1844):20161821 10.1098/rspb.2016.1821 PubMed DOI PMC
Sutherland BJ, Rico C, Audet C, Bernatchez L. Sex chromosome evolution, heterochiasmy, and physiological QTL in the salmonid brook charr Salvelinus fontinalis. G3: Genes, Genomes, Genetics. 2017;7(8):2749–2762. 10.1534/g3.117.040915 PubMed DOI PMC
Sardell JM, Kirkpatrick M. Sex differences in the recombination landscape. The American Naturalist. 2020;195(2):361–379. 10.1086/704943 PubMed DOI PMC
Brandvain Y, Coop G. Scrambling eggs: meiotic drive and the evolution of female recombination rates. Genetics. 2012;190(2):709–723. 10.1534/genetics.111.136721 PubMed DOI PMC
Charlesworth B, Charlesworth D. The degeneration of Y chromosomes. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences. 2000;355(1403):1563–1572. 10.1098/rstb.2000.0717 PubMed DOI PMC
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008;3(10):e3376 10.1371/journal.pone.0003376 PubMed DOI PMC
Rungger D. Xenopus helveticus, an endangered species? International Journal of Developmental Biology. 2002;46(1):49–63. PubMed
Baxter SW, Davey JW, Johnston JS, Shelton AM, Heckel DG, Jiggins CD, et al. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PloS One. 2011;6(4):e19315 10.1371/journal.pone.0019315 PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014; p. btu170. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987–2993. 10.1093/bioinformatics/btr509 PubMed DOI PMC
Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics. 2016;17(2):81 10.1038/nrg.2015.28 PubMed DOI PMC
Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al. TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PloS One. 2014;9(2):e90346 10.1371/journal.pone.0090346 PubMed DOI PMC
Goudet J, Raymond M, de Meeüs T, Rousset F. Testing differentiation in diploid populations. Genetics. 1996;144(4):1933–1940. PubMed PMC
Skotte L, Korneliussen TS, Albrechtsen A. Estimating individual admixture proportions from next generation sequencing data. Genetics. 2013;195(3):693–702. 10.1534/genetics.113.154138 PubMed DOI PMC
Jakobsson M, Rosenberg NA. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23(14):1801–1806. 10.1093/bioinformatics/btm233 PubMed DOI
Bhatia G, Patterson N, Sankararaman S, Price AL. Estimating and interpreting FST: The impact of rare variants. Genome Research. 2013;23(9):1514–1521. 10.1101/gr.154831.113 PubMed DOI PMC
Nieuwkoop PD. Normal table of Xenopus laevis (Daudin). Normal table of Xenopus laevis (Daudin). 1956; p. 162–203.
Bray NL, Pimentel Haroldand Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology. 2016;34(5):525–527. 10.1038/nbt.3519 PubMed DOI
Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–140. 10.1093/bioinformatics/btp616 PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15(12):550 10.1186/s13059-014-0550-8 PubMed DOI PMC
Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics. 2019;35(12):2084–2092. 10.1093/bioinformatics/bty895 PubMed DOI PMC
Wu TD, Watanabe CK. GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 2005;21(9):1859–1875. 10.1093/bioinformatics/bti310 PubMed DOI
Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory in biosciences. 2012;131(4):281–285. 10.1007/s12064-012-0162-3 PubMed DOI
Signorell A, et al. DescTools: Tools for Descriptive Statistics; 2020. Available from: https://cran.r-project.org/package=DescTools.
Margarido GRA, de Souza AP, Garcia AAF. OneMap: Software for genetic mapping in outcrossing species. Hereditas. 2007;144:78–79. 10.1111/j.2007.0018-0661.02000.x PubMed DOI
R Core Team. R: A Language and Environment for Statistical Computing; 2016. Available from: https://www.R-project.org/.
Karimi K, Fortriede JD, Lotay VS, Burns KA, Wang DZ, Fisher ME, et al. Xenbase: a genomic, epigenomic and transcriptomic model organism database. Nucleic Acids Research. 2018;46(D1):D861–D868. 10.1093/nar/gkx936 PubMed DOI PMC