A Fish of Multiple Faces, Which Show Us Enigmatic and Incredible Phenomena in Nature: Biology and Cytogenetics of the Genus Carassius

. 2022 Jul 22 ; 23 (15) : . [epub] 20220722

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35897665

Sexual vs. asexual reproduction-unisexual vs. bisexual populations-diploid vs. polyploid biotypes-genetic vs. environmental sex determination: all these natural phenomena are associated with the genus of teleost fish, Carassius. This review places emphasis on two Carassius entities with completely different biological characteristics: one globally widespread and invasive Carassius gibelio, and the other C. carassius with a decreasing trend of natural occurrence. Comprehensive biological and cytogenetic knowledge of both entities, including the physical interactions between them, can help to balance the advantages of highly invasive and disadvantages of threatened species. For example, the benefits of a wide-ranged colonization can lead to the extinction of native species or be compensated by parasitic enemies and lead to equilibrium. This review emphasizes the comprehensive biology and cytogenetic knowledge and the importance of the Carassius genus as one of the most useful experimental vertebrate models for evolutionary biology and genetics. Secondly, the review points out that effective molecular cytogenetics should be used for the identification of various species, ploidy levels, and hybrids. The proposed investigation of these hallmark characteristics in Carassius may be applied in conservation efforts to sustain threatened populations in their native ranges. Furthermore, the review focuses on the consequences of the co-occurrence of native and non-native species and outlines future perspectives of Carassius research.

Zobrazit více v PubMed

Yang L., Mayden R.L., Sado T., He S., Saitoh K., Miya M. Molecular phylogeny of the fishes traditionally referred to Cyprinini sensu stricto (Teleostei: Cypriniformes) Zool. Scr. 2010;39:527–550. doi: 10.1111/j.1463-6409.2010.00443.x. DOI

Hosoya K. Cyprinidae. In: Nakabō T., editor. Fishes Japan with Pict. Keys to Species. Tokai University Press; Tokyo, Japan: 2002. pp. 253–254. (In Japanese)

Kalous L., Bohlen J., Rylková K., Petrtýl M. Hidden diversity within the Prussian carp and designation of a neotype for Carassius gibelio (Teleostei: Cyprinidae) Ichthyol. Explor. Freshwaters. 2012;23:11–18.

Baruš V., Oliva O. Mihulovci (Petromyzontes) a Ryby (Osteichthyes) Academia; Prague, Czech Republic: 1995. p. 623.

Kottelat M., Freyhof J. Handbook of European Freshwater Fishes. Kottelat; Cornol, Switzerland: Freyhof; Berlin, Germany: 2007. p. 646.

Makino S. A Karyological Study of Gold-fish of Japan. Cytologia. 1941;12:96–111. doi: 10.1508/cytologia.12.96. DOI

Ojima Y., Hitotsumachi S. Cytogenetic studies in lower vertebrates. IV. a note on the chromosomes of the carp (Cyprinus carpio) in comparison with those of the funa and the goldfish (Carassius auratus) Jpn. J. Genet. 1967;42:163–167. doi: 10.1266/jjg.42.163. DOI

Ojima Y., Takai A. Further cytogenetical studies on the origin of the gold-fish. Proc. Japan Acad. Ser. B Phys. Biol. Sci. 1979;55:346–350. doi: 10.2183/pjab.55.346. DOI

Gao Y., Wang S.Y., Luo J., Murphy R.W., Du R., Wu S.F., Zhu C.L., Li Y., Poyarkov A.D., Nguyen S.N., et al. Quaternary palaeoenvironmental oscillations drove the evolution of the eurasian Carassius auratus complex (cypriniformes, cyprinidae) J. Biogeogr. 2012;39:2264–2278. doi: 10.1111/j.1365-2699.2012.02755.x. DOI

Rylková K., Kalous L., Bohlen J., Lamatsch D.K., Petrtýl M. Phylogeny and biogeographic history of the cyprinid fish genus Carassius (Teleostei: Cyprinidae) with focus on natural and anthropogenic arrivals in Europe. Aquaculture. 2013;380–383:13–20. doi: 10.1016/j.aquaculture.2012.11.027. DOI

Cheng L., Lu C., Wang L., Li C., Yu X. Coexistence of three divergent mtdna lineages in northeast asia provides new insights into phylogeography of goldfish (Carssius auratus) Animals. 2020;10:1785. doi: 10.3390/ani10101785. PubMed DOI PMC

Takada M., Tachihara K., Kon T., Yamamoto G., Iguchi K., Miya M., Nishida M. Biogeography and evolution of the Carassius auratus-complex in East Asia. BMC Evol. Biol. 2010;10:7. doi: 10.1186/1471-2148-10-7. PubMed DOI PMC

Yamamoto G., Takada M., Iguchi K., Nishida M. Genetic constitution and phylogenetic relationships of Japanese crucian carps (Carassius) Ichthyol. Res. 2010;57:215–222. doi: 10.1007/s10228-010-0152-8. DOI

Iguchi K., Yamamoto G., Matsubara N., Nishida M. Morphological and genetic analysis of fish of a Carassius complex (Cyprinidae) in Lake Kasumigaura with reference to the taxonomic status of two all-female triploid morphs. Biol. J. Linn. Soc. 2003;79:351–357. doi: 10.1046/j.1095-8312.2003.00196.x. DOI

Berg L.S. Über Carassius carassius und C. gibelio. Zool. Anz. 1932;98:15–18.

Kalous L., Knytl M. Karyotype diversity of the offspring resulting from reproduction experiment between diploid male and triploid female of silver Prussian carp, Carassius gibelio (Cyprinidae, Actinopterygii) Folia Zool. 2011;60:115–121. doi: 10.25225/fozo.v60.i2.a5.2011. DOI

Zhou L., Wang Y., Gui J.F. Genetic Evidence for Gonochoristic Reproduction in Gynogenetic Silver Crucian Carp (Carassius auratus gibelio Bloch) as Revealed by RAPD Assays. J. Mol. Evol. 2000;51:498–506. doi: 10.1007/s002390010113. PubMed DOI

Wen M., Feron R., Pan Q., Guguin J., Jouanno E., Herpin A., Klopp C., Cabau C., Zahm M., Parrinello H., et al. Sex chromosome and sex locus characterization in goldfish, Carassius auratus (Linnaeus, 1758) BMC Genom. 2020;21:1–12. doi: 10.1186/s12864-020-06959-3. PubMed DOI PMC

Balon E.K. About the oldest domesticates among fishes. J. Fish Biol. 2004;65:1–27. doi: 10.1111/j.0022-1112.2004.00563.x. DOI

Hänfling B., Bolton P., Harley M., Carvalho G.R., Hanfling B., Bolton P., Harley M., Carvalho G.R. A molecular approach to detect hybridisation between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius spp. and Cyprinus carpio) Freshw. Biol. 2005;50:403–417. doi: 10.1111/j.1365-2427.2004.01330.x. DOI

Knytl M., Kalous L., Symonová R., Rylková K., Ráb P. Chromosome Studies of European Cyprinid Fishes: Cross-Species Painting Reveals Natural Allotetraploid Origin of a Carassius Female with 206 Chromosomes. Cytogenet. Genome Res. 2013;139:276–283. doi: 10.1159/000350689. PubMed DOI

Paepke H.-J. Thesis Zoologicae 31. ARG Gantner Verlag KG; Lund, Sweden: 1999. Bloch’s Fish Collection in the Museum fur Naturkunde der Humboldt-Universitat zu Berlin: An Illustrated Catalog and Historical Account.

Sakai H., Iguchi K., Yamazaki Y., Sideleva V.G., Goto A. Morphological and mtDNA sequence studies on three crucian carps (Carassius: Cyprinidae) including a new stock from the Ob river system, Kazakhstan. J. Fish Biol. 2009;74:1756–1773. doi: 10.1111/j.1095-8649.2009.02203.x. PubMed DOI

Makino S. Notes on the chromosomes of some fresh-water Teleosts. Jpn. J. Genet. 1934;9:100–103.

Cherfas N.B. Natural triploidy in females of the unisexual form of silver crucian carp (Carassius auratus gibelio Bloch) Genetika. 1966;5:16–24.

Knytl M., Fornaini N.R. Measurement of Chromosomal Arms and FISH Reveal Complex Genome Architecture and Standardized Karyotype of Model Fish, Genus Carassius. Cells. 2021;10:2343. doi: 10.3390/cells10092343. PubMed DOI PMC

Zan R.G., Song Z. Analysis and comparison between the karyotypes of Cyprinus carpio and Carassius auratus as well as Aristichthys nobilis and Hypophthalmichthys molitrix. Acta Genet. Sin. 1980;7:72–77.

Zan R.G. Studies of sex chromosomes and C-banding karyotypes of two forms of Carassius auratus in Kunming Lake. Acta Genet. Sin. 1982;9:32–39.

Wang R.F., Shi L.M., He W.S. A Comparative Study of the Ag-NORS of Carassius auratus from Different Geographic Districts. Zool. Res. 1988;9:165–169.

Wang R.F., Shi L.M., He W.S. The karyotype of Carassius auratus from ER hai Lake. Zool. Res. 1989;10:169–170.

Kobayasi H., Ochi H., Takeuchi N. Chromosome studies of the silver crucian carps (Carassius auratus gibelio) from the valley of the Amur river, and their progenies. Jpn. Women’s Univ. 1973;20:83–88.

Sofradžija A., Berberović L., Hadžiselimović R. Hromosomske garniture karaša (Carassius carassius) i babuške (Carassius auratus gibelio) Ichthyologia. 1978;10:135–148.

Peňáz M., Rab P., Prokeš M. Acta Scientiarum Naturalium Academiae Scientiarum Bohemoslovacae, Brno. Nova Series. Academia; Prague, Czech Republic: 1979. Cytological Analysis, Gynogenesis and Early Development of Carassius auratus gibelio; pp. 1–33.

Vujosevic M., Zivkovic C., Desanka R., Jurisic S., Cakic P. The chromosomes of 9 fish species from Dunav basin in Yugoslavia. Ichthyologia. 1983;15:29–40.

Mayr B., Ráb P., Kalat M. NORs and counterstain-enhanced fluorescence studies in Cyprinidae of different ploidy level. Genetica. 1986;69:111–118. doi: 10.1007/BF00115130. PubMed DOI

Fister S., Soldatovic B. Karyotype analysis of a gynogenetic population of Carassius auratus gibelio Bloch (Cyprinidae) from Pancevacki Rit [Yugoslavia] Acta Vet. 1989;39:259–267.

Fan Z., Shen J. Studies on the evolution of bisexual reproduction in crucian carp (Carassius auratus gibelio Bloch) Aquaculture. 1990;84:235–244. doi: 10.1016/0044-8486(90)90089-6. DOI

Boron A. Karyotypes of diploid and triploid silver crucian carp Carassius auratus gibelio (Bloch) Cytobios. 1994;80:117–124.

Zhou L., Gui J.F. Karyotypic diversity in polyploid gibel carp, Carassius auratus gibelio Bloch. Genetica. 2002;115:223–232. doi: 10.1023/A:1020102409270. PubMed DOI

Boroń A., Szlachciak J., Juchno D., Grabowska A., Jagusztyn B., Porycka K. Karyotype, morphology, and reproduction ability of the Prussian carp, Carassius gibelio (Actinopterygii: Cypriniformes: Cyprinidae), from unisexual and bisexual populations in Poland. Acta Ichthyol. Piscat. 2011;41:19–28. doi: 10.3750/AIP2011.41.1.04. DOI

Kobayasi H., Kawashima Y., Takeuchi N. Comparative Chromosome Studies in the Genus Carassius, Especially with a Finding of Polyploidy in the Ginbuna (C. auratus langsdorfii) Jpn. J. Ichthyol. 1970;17:153–160. doi: 10.11369/JJI1950.17.153. DOI

Kobayasi H., Ochi H., Takeuchi N. Chromosome studies in the genus Carassius: Comparison of C. auratus grandoculis, C. auratus buergeri, and C. auratus langsdorfii. Jpn. J. Ichthyol. 1973;20:6. doi: 10.11369/jji1950.20.7. DOI

Muramoto J.A. Note on Triploidy of the Funa. Proc. Jpn. Acad. 1975;51:583–587. doi: 10.2183/pjab1945.51.583. DOI

Kobayasi H., Nakano K., Nakamura M. On the hybrids, 4n Ginbuna (Carassius auratus langsdorfii) x Kinbuna (C. auratus subsp.), and their chromosomes. Bull. Jpn. Soc. Sci. Fish. 1977;43:31–37. doi: 10.2331/suisan.43.31. DOI

Kalous L., Šlechtová V., Bohlen J., Petrtýl M., Švátora M. First European record of Carassius langsdorfii from the Elbe basin. J. Fish Biol. 2007;70:132–138. doi: 10.1111/j.1095-8649.2006.01290.x. DOI

Ojima Y., Hitotsumachi S., Makino S. Cytogenetic Studies in Lower Vertebrates. I A Preliminary Report on the Chromosomes of the Funa (Carassius auratus) and Gold-fish (A Revised Study) Proc. Jpn. Acad. 1966;42:62–66. doi: 10.2183/pjab1945.42.62. DOI

Ueda T., Ojima Y. Differential Chromosomal Characteristics in the Funa Subspecies (Carassius) Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 1978;54:283–288. doi: 10.2183/pjab.54.283. DOI

Ojima Y., Yamano T. The assignment of the nucleolar organizer in the chromosomes of the funa (Carassius, cyprinidae, pisces) Proc. Jpn. Acad. Ser. B. 1980;56:551–556. doi: 10.2183/pjab.56.551. DOI

Knytl M., Kalous L., Rab P. Karyotype and chromosome banding of endangered crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae) Comp. Cytogenet. 2013;7:205–213. doi: 10.3897/compcytogen.v7i3.5411. PubMed DOI PMC

Spoz A., Boron A., Porycka K., Karolewska M., Ito D., Abe S., Kirtiklis L., Juchno D. Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes. Comp. Cytogenet. 2014;8:233–248. doi: 10.3897/compcytogen.v8i3.7718. PubMed DOI PMC

Xiao J., Zou T., Chen Y., Chen L., Liu S., Tao M., Zhang C., Zhao R., Zhou Y., Long Y., et al. Coexistence of diploid, triploid and tetraploid crucian carp (Carassius auratus) in natural waters. BMC Genet. 2011;12:20. doi: 10.1186/1471-2156-12-20. PubMed DOI PMC

Jiang F.F., Wang Z.W., Zhou L., Jiang L., Zhang X.J., Apalikova O.V., Brykov V.A., Gui J.F. High male incidence and evolutionary implications of triploid form in northeast Asia Carassius auratus complex. Mol. Phylogenet. Evol. 2013;66:350–359. doi: 10.1016/j.ympev.2012.10.006. PubMed DOI

Liu S., Liu Y., Zhou G., Zhang X., Luo C., Feng H., He X., Zhu G., Yang H. The formation of tetraploid stocks of red crucian carp×common carp hybrids as an effect of interspecific hybridization. Aquaculture. 2001;192:171–186. doi: 10.1016/S0044-8486(00)00451-8. DOI

Shao G.M., Li X.Y., Wang Y., Wang Z.W., Li Z., Zhang X.J., Zhou L., Gui J.F. Whole genome incorporation and epigenetic stability in a newly synthetic allopolyploid of gynogenetic gibel carp. Genome Biol. Evol. 2018;10:2394–2407. doi: 10.1093/gbe/evy165. PubMed DOI PMC

Ohno S. Evolution by Gene Duplication. Springer; Berlin/Heidelberg, Germany: 1970. DOI

Takai A., Ojima Y. The assignment of the nucleolus organizer regions in the chromosomes of the carp, the funa and their hybrids (Cyprinidae, Pisces) Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 1982;58:303–306. doi: 10.2183/pjab.58.303. DOI

Knytl M., Smolík O., Kubíčková S., Tlapáková T., Evans B.J., Krylov V. Chromosome divergence during evolution of the tetraploid clawed frogs, Xenopus mellotropicalis and Xenopus epitropicalis as revealed by Zoo-FISH. PLoS ONE. 2017;12:e0177087. doi: 10.1371/journal.pone.0177087. PubMed DOI PMC

Cioffi M.d.B., Ráb P., Ezaz T., Bertollo L.A.C., Lavoué S., de Oliveira E.A., Sember A., Molina W.F., de Souza F.H.S., Majtánová Z., et al. Deciphering the evolutionary history of arowana fishes (Teleostei, osteoglossiformes, osteoglossidae): Insight from comparative cytogenomics. Int. J. Mol. Sci. 2019;20:4296. doi: 10.3390/ijms20174296. PubMed DOI PMC

Molina W.F., Costa G.W., Cunha I.M., Bertollo L.A., Ezaz T., Liehr T., Cioffi M.B. Molecular cytogenetic analysis in freshwater prawns of the genus macrobrachium (Crustacea: Decapoda: Palaemonidae) Int. J. Mol. Sci. 2020;21:2599. doi: 10.3390/ijms21072599. PubMed DOI PMC

Saenjundaeng P., Supiwong W., Sassi F.M., Bertollo L.A., Rab P., Kretschmer R., Tanomtong A., Suwannapoom C., Reungsing M., De Bello Cioffi M. Chromosomes of asian cyprinid fishes: Variable karyotype patterns and evolutionary trends in the genus osteochilus (cyprinidae, labeoninae, “osteochilini”) Genet. Mol. Biol. 2020;43:1–8. doi: 10.1590/1678-4685-gmb-2020-0195. PubMed DOI PMC

Mazzoleni S., Rovatsos M., Schillaci O., Dumas F. Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes. Comp. Cytogenet. 2018;12:27–40. doi: 10.3897/compcytogen.v12i1.19381. PubMed DOI PMC

Milioto V., Vlah S., Mazzoleni S., Rovatsos M., Dumas F. Chromosomal Localization of 18S-28S rDNA and (TTAGGG)n Sequences in Two South African Dormice of the Genus Graphiurus (Rodentia: Gliridae) Cytogenet. Genome Res. 2019;158:145–151. doi: 10.1159/000500985. PubMed DOI

Scardino R., Milioto V., Proskuryakova A.A., Serdyukova N.A., Perelman P.L., Dumas F. Evolution of the Human Chromosome 13 Synteny: Evolutionary Rearrangements, Plasticity, Human Disease Genes and Cancer Breakpoints. Genes. 2020;11:383. doi: 10.3390/genes11040383. PubMed DOI PMC

Sember A., Pelikánová Š., de Bello Cioffi M., Šlechtová V., Hatanaka T., Do Doan H., Knytl M., Ráb P. Taxonomic Diversity Not Associated with Gross Karyotype Differentiation: The Case of Bighead Carps, Genus Hypophthalmichthys (Teleostei, Cypriniformes, Xenocyprididae) Genes. 2020;11:479. doi: 10.3390/genes11050479. PubMed DOI PMC

Kostmann A., Augstenová B., Frynta D., Kratochvíl L., Rovatsos M. Cytogenetically elusive sex chromosomes in scincoidean lizards. Int. J. Mol. Sci. 2021;22:8670. doi: 10.3390/ijms22168670. PubMed DOI PMC

Sumida M., Kato Y., Kurabayashi A. Sequencing and analysis of the internal transcribed spacers (ITSs) and coding regions in the EcoR I fragment of the ribosomal DNA of the Japanese pond frog Rana nigromaculata. Genes Genet. Syst. 2004;79:105–118. doi: 10.1266/ggs.79.105. PubMed DOI

Knytl M., Kalous L., Rylková K., Choleva L., Merilä J., Ráb P. Morphologically indistinguishable hybrid Carassius female with 156 chromosomes: A threat for the threatened crucian carp, C. carassius, L. PLoS ONE. 2018;13:e0190924. doi: 10.1371/journal.pone.0190924. PubMed DOI PMC

Zhu H.P., Ma D.M., Gui J.F. Triploid origin of the gibel carp as revealed by 5S rDNA localization and chromosome painting. Chromosom. Res. 2006;14:767–776. doi: 10.1007/s10577-006-1083-0. PubMed DOI

Murakami M., Fujitani H. Characterization of repetitive DNA sequences carrying 5S rDNA of the triploid ginbuna (Japanese silver crucian carp, Carassius auratus langsdorfi) Genes Genet. Syst. 1998;73:9–20. doi: 10.1266/ggs.73.9. PubMed DOI

Dong J., Murakami M., Fujimoto T., Yamaha E., Arai K. Genetic characterization of the progeny of a pair of the tetraploid silver crucian carp Carassius auratus langsdorfii. Fish. Sci. 2013;79:935–941. doi: 10.1007/s12562-013-0674-x. DOI

Zhu H.P., Gui J.F. Identification of genome organization in the unusual allotetraploid form of Carassius auratus gibelio. Aquaculture. 2007;265:109–117. doi: 10.1016/j.aquaculture.2006.10.026. DOI

Lu M., Wang Z.W., Hu C.J., Zhou L., Gui J.F. Genetic identification of a newly synthetic allopolyploid strain with 206 chromosomes in polyploid gibel carp. Aquac. Res. 2018;49:1–10. doi: 10.1111/are.13485. DOI

Hubbs C.L., Hubbs L.C. Apparent Parthenogenesis in Nature, in a Form of Fish of Hybrid Origin. Science. 1932;76:628–630. doi: 10.1126/science.76.1983.628. PubMed DOI

Neaves W.B., Baumann P. Unisexual reproduction among vertebrates. Trends Genet. 2011;27:81–88. doi: 10.1016/j.tig.2010.12.002. PubMed DOI

Jiang Y.G., Liang S.C., Chen B.D., Yu H.X., Shan S.X., Yang D., Lin S., Shen G., Chen B.D., Liang S.C., et al. Biological effect of heterologous sperm on gynogenetic offspring in Carassius auratus gibelio. Acta Hydrobiol. Sin. 1983;8:1–16.

Yi M.S., Li Y.Q., Liu J.D., Zhou L., Yu Q.X., Gui J.F. Molecular cytogenetic detection of paternal chromosome fragments in allogynogenetic gibel carp, Carassius auratus gibelio Bloch. Chromosom. Res. 2003;11:665–671. doi: 10.1023/A:1025985625706. PubMed DOI

Gui J., Zhou L. Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio. Sci. China Life Sci. 2010;53:409–415. doi: 10.1007/s11427-010-0092-6. PubMed DOI

Zhang J., Sun M., Zhou L., Li Z., Liu Z., Li X.Y., Liu X.L., Liu W., Gui J.F. Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio. Sci. Rep. 2015;5:10898. doi: 10.1038/srep10898. PubMed DOI PMC

Yamashita M., Jiang J., Onozato H., Nakanishi T., Nagahama Y. A Tripolar Spindle Formed at Meiosis I Assures the Retention of the Original Ploidy in the Gynogenetic Triploid Crucian Carp, Ginbuna Carassius auratus langsdorfii. (fish oocytes/gynogenesis/meiosis/spindle formation/histone H1 kinase) Dev. Growth Differ. 1993;35:631–636. doi: 10.1111/j.1440-169X.1993.00631.x. PubMed DOI

Toth B., Varkonyi E., Hidas A., Edvine Meleg E., Varadi L. Genetic analysis of offspring from intra- and interspecific crosses of Carassius auratus gibelio by chromosome and RAPD analysis. J. Fish Biol. 2005;66:784–797. doi: 10.1111/j.0022-1112.2005.00644.x. DOI

Flajšhans M., Rodina M., Halačka K., Vetešník L., Gela D., Lusková V., Lusk S. Characteristics of sperm of polyploid Prussian carp Carassius gibelio. J. Fish Biol. 2008;73:323–328. doi: 10.1111/j.1095-8649.2008.01937.x. DOI

Chiarelli B., Ferrantelli O., Cucchi C. The caryotype of some teleostea fish obtained by tissue culture in vitro. Experientia. 1969;25:426–427. doi: 10.1007/BF01899963. PubMed DOI

Raicu P., Taisescu E., Banarescu P. Carassius carassius and Carassius auratus, a pair of diploid and tetraploid representative species (Pices, Cyprinidae) Cytologia. 1981;46:233–240. doi: 10.1508/cytologia.46.233. DOI

Gui J.F., Liang S.C., Zhu L.F., Jiang Y.G. Discovery of two different reproductive development modes of the eggs of artificial multiple tetraploid allogynogenetic Silver crucian carp. Chin. Sci. Bull. 1993;38:332–337.

Lamatsch D., Stöck M. Sperm-dependent parthenogenesis and hybridogenesis in teleost fishes. In: Schöne I., Martens K., van Dijk P., editors. Lost Sex. Springer; Dordrecht, The Netherlands: 2009. pp. 399–432.

Linhart O., Flajšhans M., Kvasnička P. Induced triploidy in the common carp (Cyprinus carpio L.): A comparison of two methods. Aquat. Living Resour. 1991;4:139–145. doi: 10.1051/alr:1991014. DOI

Prokešová Š., Ghaibour K., Liška F., Klein P., Fenclová T., Štiavnická M., Hošek P., Žalmanová T., Hošková K., Řimnáčová H., et al. Acute low-dose bisphenol S exposure affects mouse oocyte quality. Reprod. Toxicol. 2020;93:19–27. doi: 10.1016/j.reprotox.2019.12.005. PubMed DOI

Eng W.H., Ho W.S. Polyploidization using colchicine in horticultural plants: A review. Sci. Hortic. 2019;246:604–617. doi: 10.1016/j.scienta.2018.11.010. DOI

Seroussi E., Knytl M., Pitel F., Elleder D., Krylov V., Leroux S., Morisson M., Yosefi S., Miyara S., Ganesan S., et al. Avian Expression Patterns and Genomic Mapping Implicate Leptin in Digestion and TNF in Immunity, Suggesting That Their Interacting Adipokine Role Has Been Acquired Only in Mammals. Int. J. Mol. Sci. 2019;20:4489. doi: 10.3390/ijms20184489. PubMed DOI PMC

Knytl M., Tlapakova T., Vankova T., Krylov V. Silurana Chromosomal Evolution: A New Piece to the Puzzle. Cytogenet. Genome Res. 2018;156:223–228. doi: 10.1159/000494708. PubMed DOI

Lampert K.P., Schartl M. The origin and evolution of a unisexual hybrid: Poecilia formosa. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008;363:2901–2909. doi: 10.1098/rstb.2008.0040. PubMed DOI PMC

Li J.T., Wang Q., Huang Yang M.D., Li Q.S., Cui M.S., Dong Z.J., Wang H.W., Yu J.H., Zhao Y.J., Yang C.R., et al. Parallel subgenome structure and divergent expression evolution of allo-tetraploid common carp and goldfish. Nat. Genet. 2021;53:1493–1503. doi: 10.1038/s41588-021-00933-9. PubMed DOI PMC

Wang Y., Li X.Y., Xu W.J., Wang K., Wu B., Xu M., Chen Y., Miao L.j., Wang Z.W., Li Z., et al. Comparative genome anatomy reveals evolutionary insights into a unique amphitriploid fish. Nat. Ecol. Evol. 2022 doi: 10.1038/s41559-022-01813-z. PubMed DOI PMC

Haynes G.D., Gongora J., Gilligan D.M., Grewe P., Moran C., Nicholas F.W. Cryptic hybridization and introgression between invasive Cyprinid species Cyprinus carpio and Carassius auratus in Australia: Implications for invasive species management. Anim. Conserv. 2012;15:83–94. doi: 10.1111/j.1469-1795.2011.00490.x. DOI

Wouters J., Janson S., Lusková V., Olsén K.H. Molecular identification of hybrids of the invasive gibel carp Carassius auratus gibelio and crucian carp Carassius carassius in Swedish waters. J. Fish Biol. 2012;80:2595–2604. doi: 10.1111/j.1095-8649.2012.03312.x. PubMed DOI

Papoušek I., Vetešník L., Halačka K., Lusková V., Humpl M., Mendel J. Identification of natural hybrids of gibel carp Carassius auratus gibelio (Bloch) and crucian carp Carassius carassius (L.) from lower Dyje River floodplain (Czech Republic) J. Fish Biol. 2008;72:1230–1235. doi: 10.1111/j.1095-8649.2007.01783.x. DOI

Smartt J. A possible genetic basis for species replacement: Preliminary results of interspecific hybridisation between native crucian carp Carassius carassius (L.) and introduced goldfish Carassius auratus (L.) Aquat. Invasions. 2007;2:59–62. doi: 10.3391/ai.2007.2.1.7. DOI

Mezhzherin S.V., Kokodii S.V., Kulish A.V., Verlatii D.B., Fedorenko L.V. Hybridization of crucian carp Carassius carassius (Linnaeus, 1758) in Ukrainian reservoirs and the genetic structure of hybridsHybridization of crucian carp Carassius carassius (Linnaeus, 1758) in Ukrainian reservoirs and the genetic structure of hybrids. Cytol. Genet. 2012;46:28–35. doi: 10.3103/S0095452712010069. PubMed DOI

Targueta C.P., Krylov V., Nondilo T.E., Lima J., Lourenço L.B. Sex chromosome evolution in frogs—Helpful insights from chromosome painting in the genus Engystomops. Heredity. 2021;126:396–409. doi: 10.1038/s41437-020-00385-7. PubMed DOI PMC

Knytl M., Fornaini N.R., Bergelová B., Gvoždík V., Černohorská H., Kubíčková S., Fokam E.B., Evans B.J., Krylov V. Divergent Subgenome Evolution in the Allotetraploid Frog Xenopus Calcaratus. PREPRINT, Version 2, available at Research Square. [(accessed on 9 June 2022)]. pp. 1–30. Available online: https://www.researchsquare.com/article/rs-1690259/v2. PubMed DOI

Perdikaris C., Ergolavou A., Gouva E., Nathanailides C., Chantzaropoulos A., Paschos I. Carassius gibelio in Greece: The dominant naturalised invader of freshwaters. Rev. Fish Biol. Fish. 2012;22:17–27. doi: 10.1007/s11160-011-9216-8. DOI

Elgin E., Tunna H., Jackson L. First confirmed records of Prussian carp, Carassius gibelio (Bloch, 1782) in open waters of North America. BioInvasions Rec. 2014;3:275–282. doi: 10.3391/bir.2014.3.4.09. DOI

Khosravi M., Abdoli A., Tajbakhsh F., Ahmadzadeh F., Nemati H., Kiabi B.H. An Effort toward Species Delimitation in the Genus Carassius (Cyprinidae) using Morphology and the Related Challenges: A Case Study from Inland Waters of Iran. J. Ichthyol. 2022;62:185–194. doi: 10.1134/S0032945222020096. DOI

Sayer C.D., Copp G.H., Emson D., Godard M.J., Ziȩba G., Wesley K.J. Towards the conservation of crucian carp Carassius carassius: Understanding the extent and causes of decline within part of its native English range. J. Fish Biol. 2011;79:1608–1624. doi: 10.1111/j.1095-8649.2011.03059.x. PubMed DOI

Tarkan A.S., Gaygusuz Ö., Gürsoy Gaygusuz Ç., Saç G., Copp G.H. Circumstantial evidence of gibel carp, Carassius gibelio, reproductive competition exerted on native fish species in a mesotrophic reservoir. Fish. Manag. Ecol. 2012;19:167–177. doi: 10.1111/j.1365-2400.2011.00839.x. DOI

Lively C.M., Craddock C., Vrijenhoek R.C. Red Queen hypothesis supported by parasitism in sexual and clonal fish. Nature. 1990;344:864–866. doi: 10.1038/344864a0. DOI

Daněk T., Kalous L., Veselý T., Krásová E., Reschová S., Rylková K., Kulich P., Petrtýl M., Pokorová D., Knytl M. Massive mortality of Prussian carp Carassius gibelio in the upper Elbe basin associated with herpesviral hematopoietic necrosis (CyHV-2) Dis. Aquat. Organ. 2012;102:87–95. doi: 10.3354/dao02535. PubMed DOI

Boitard P.M., Baud M., Labrut S., de Boisséson C., Jamin M., Bigarré L. First detection of Cyprinid Herpesvirus 2 (CyHV-2) in goldfish (Carassius auratus) in France. J. Fish Dis. 2016;39:673–680. doi: 10.1111/jfd.12400. PubMed DOI

Ito T., Kurita J., Haenen O. Importation of CyHV-2-infected goldfish into the Netherlands. Dis. Aquat. Organ. 2017;126:51–62. doi: 10.3354/dao03157. PubMed DOI

Ouyang P., Zhou Y., Wang K., Geng Y., Lai W., Huang X., Chen D., Guo H., Fang J., Chen Z., et al. First report of Cyprinid herpesvirus 2 outbreak in cultured gibel carp, Carassius auratus gibelio at low temperature. J. World Aquac. Soc. 2020;51:1208–1220. doi: 10.1111/jwas.12681. DOI

Thangaraj R.S., Nithianantham S.R., Dharmaratnam A., Kumar R., Pradhan P.K., Thangalazhy Gopakumar S., Sood N. Cyprinid herpesvirus-2 (CyHV-2): A comprehensive review. Rev. Aquac. 2021;13:796–821. doi: 10.1111/raq.12499. DOI

Hakoyama H., Nishimura T., Matsubara N., Iguchi K. Difference in parasite load and nonspecific immune reaction between sexual and gynogenetic forms of Carassius auratus. Biol. J. Linn. Soc. 2001;72:401–407. doi: 10.1111/j.1095-8312.2001.tb01326.x. DOI

Devlin R.H., Nagahama Y. Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture. 2002;208:191–364. doi: 10.1016/S0044-8486(02)00057-1. DOI

Yamamoto T.O., Kajishima T. Sex hormone induction of sex reversal in the goldfish and evidence for male heterogamity. J. Exp. Zool. 1968;168:215–221. doi: 10.1002/jez.1401680209. PubMed DOI

Goto-Kazeto R., Abe Y., Masai K., Yamaha E., Adachi S., Yamauchi K. Temperature-dependent sex differentiation in goldfish: Establishing the temperature-sensitive period and effect of constant and fluctuating water temperatures. Aquaculture. 2006;254:617–624. doi: 10.1016/j.aquaculture.2005.10.009. DOI

Li X.Y., Gui J.F. Diverse and variable sex determination mechanisms in vertebrates. Sci. China Life Sci. 2018;61:1503–1514. doi: 10.1007/s11427-018-9415-7. PubMed DOI

Rissanen E., Tranberg H.K., Sollid J., Nilsson G.E., Nikinmaa M. Temperature regulates hypoxia-inducible factor-1 (HIF-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius) J. Exp. Biol. 2006;209:994–1003. doi: 10.1242/jeb.02103. PubMed DOI

Yadrenkina E.N. Appearance of hermaphrodite individuals in the crucian population (Carassius auratus, Cyprinidae) during the regression phase of the water level in Chany Lake (Western Siberia) Limnology. 2020;21:287–295. doi: 10.1007/s10201-020-00615-1. DOI

Burke J.M., Arnold M.L. Genetics and the Fitness of Hybrids. Annu. Rev. Genet. 2001;35:31–52. doi: 10.1146/annurev.genet.35.102401.085719. PubMed DOI

Nolte A.W., Tautz D. Understanding the onset of hybrid speciation. Trends Genet. 2010;26:54–58. doi: 10.1016/j.tig.2009.12.001. PubMed DOI

Janko K., Pačes J., Wilkinson-Herbots H., Costa R.J., Roslein J., Drozd P., Iakovenko N., Rídl J., Hroudová M., Kočí J., et al. Hybrid asexuality as a primary postzygotic barrier between nascent species: On the interconnection between asexuality, hybridization and speciation. Mol. Ecol. 2018;27:248–263. doi: 10.1111/mec.14377. PubMed DOI PMC

Mallet J. Hybrid speciation. Nature. 2007;446:279–283. doi: 10.1038/nature05706. PubMed DOI

Li X.Y., Liu X.L., Zhu Y.J., Zhang J., Ding M., Wang M.T., Wang Z.W., Li Z., Zhang X.J., Zhou L., et al. Origin and transition of sex determination mechanisms in a gynogenetic hexaploid fish. Heredity. 2018;121:64–74. doi: 10.1038/s41437-017-0049-7. PubMed DOI PMC

Cauret C.M.S., Gansauge M.T., Tupper A.S., Furman B.L.S., Knytl M., Song X.Y., Greenbaum E., Meyer M., Evans B.J. Developmental Systems Drift and the Drivers of Sex Chromosome Evolution. Mol. Biol. Evol. 2020;37:799–810. doi: 10.1093/molbev/msz268. PubMed DOI

Furman B.L.S., Cauret C.M.S., Knytl M., Song X.Y., Premachandra T., Ofori-Boateng C., Jordan D.C., Horb M.E., Evans B.J. A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genet. 2020;16:e1009121. doi: 10.1371/journal.pgen.1009121. PubMed DOI PMC

Song X.Y., Furman B.L.S., Premachandra T., Knytl M., Cauret C.M.S., Wasonga D.V., Measey J., Dworkin I., Evans B.J. Sex chromosome degeneration, turnover, and sex-biased expression of sex-linked transcripts in African clawed frogs (Xenopus) Philos. Trans. R. Soc. B Biol. Sci. 2021;376:20200095. doi: 10.1098/rstb.2020.0095. PubMed DOI PMC

Yoshimoto S., Okada E., Umemoto H., Tamura K., Uno Y., Nishida-Umehara C., Matsuda Y., Takamatsu N., Shiba T., Ito M. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl. Acad. Sci. USA. 2008;105:2469–2474. doi: 10.1073/pnas.0712244105. PubMed DOI PMC

Meccariello A., Salvemini M., Primo P., Hall B., Koskinioti P., Dalíková M., Gravina A., Gucciardino M.A., Forlenza F., Gregoriou M.E., et al. Maleness-on-the-Y (MoY) orchestrates male sex determination in major agricultural fruit fly pests. Science. 2019;365:1457–1460. doi: 10.1126/science.aax1318. PubMed DOI

Rossi A., Kontarakis Z., Gerri C., Nolte H., Hölper S., Krüger M., Stainier D.Y. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature. 2015;524:230–233. doi: 10.1038/nature14580. PubMed DOI

Liu Q., Qi Y., Liang Q., Song J., Liu J., Li W., Shu Y., Tao M., Zhang C., Qin Q., et al. Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny. Sci. China Life Sci. 2019;62:1194–1202. doi: 10.1007/s11427-018-9404-7. PubMed DOI

Yin F., Liu W., Chai J., Lu B., Murphy R.W., Luo J. CRISPR/Cas9 application for gene copy fate survey of polyploid vertebrates. Front. Genet. 2018;9:260. doi: 10.3389/fgene.2018.00260. PubMed DOI PMC

Copp G.H., Warrington S., Wesley K.J. Management of an ornamental pond as a conservation site for a threatened native fish species, crucian carp Carassius carassius. Hydrobiologia. 2008;597:149–155. doi: 10.1007/s10750-007-9220-0. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...