A Fish of Multiple Faces, Which Show Us Enigmatic and Incredible Phenomena in Nature: Biology and Cytogenetics of the Genus Carassius
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35897665
PubMed Central
PMC9330404
DOI
10.3390/ijms23158095
PII: ijms23158095
Knihovny.cz E-zdroje
- Klíčová slova
- Carassius auratus complex, asexuality, biotype, hybridization, ploidy level, sex determination, sexuality, species,
- MeSH
- Cyprinidae * MeSH
- cytogenetické vyšetření MeSH
- cytogenetika MeSH
- diploidie MeSH
- ploidie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Sexual vs. asexual reproduction-unisexual vs. bisexual populations-diploid vs. polyploid biotypes-genetic vs. environmental sex determination: all these natural phenomena are associated with the genus of teleost fish, Carassius. This review places emphasis on two Carassius entities with completely different biological characteristics: one globally widespread and invasive Carassius gibelio, and the other C. carassius with a decreasing trend of natural occurrence. Comprehensive biological and cytogenetic knowledge of both entities, including the physical interactions between them, can help to balance the advantages of highly invasive and disadvantages of threatened species. For example, the benefits of a wide-ranged colonization can lead to the extinction of native species or be compensated by parasitic enemies and lead to equilibrium. This review emphasizes the comprehensive biology and cytogenetic knowledge and the importance of the Carassius genus as one of the most useful experimental vertebrate models for evolutionary biology and genetics. Secondly, the review points out that effective molecular cytogenetics should be used for the identification of various species, ploidy levels, and hybrids. The proposed investigation of these hallmark characteristics in Carassius may be applied in conservation efforts to sustain threatened populations in their native ranges. Furthermore, the review focuses on the consequences of the co-occurrence of native and non-native species and outlines future perspectives of Carassius research.
Zobrazit více v PubMed
Yang L., Mayden R.L., Sado T., He S., Saitoh K., Miya M. Molecular phylogeny of the fishes traditionally referred to Cyprinini sensu stricto (Teleostei: Cypriniformes) Zool. Scr. 2010;39:527–550. doi: 10.1111/j.1463-6409.2010.00443.x. DOI
Hosoya K. Cyprinidae. In: Nakabō T., editor. Fishes Japan with Pict. Keys to Species. Tokai University Press; Tokyo, Japan: 2002. pp. 253–254. (In Japanese)
Kalous L., Bohlen J., Rylková K., Petrtýl M. Hidden diversity within the Prussian carp and designation of a neotype for Carassius gibelio (Teleostei: Cyprinidae) Ichthyol. Explor. Freshwaters. 2012;23:11–18.
Baruš V., Oliva O. Mihulovci (Petromyzontes) a Ryby (Osteichthyes) Academia; Prague, Czech Republic: 1995. p. 623.
Kottelat M., Freyhof J. Handbook of European Freshwater Fishes. Kottelat; Cornol, Switzerland: Freyhof; Berlin, Germany: 2007. p. 646.
Makino S. A Karyological Study of Gold-fish of Japan. Cytologia. 1941;12:96–111. doi: 10.1508/cytologia.12.96. DOI
Ojima Y., Hitotsumachi S. Cytogenetic studies in lower vertebrates. IV. a note on the chromosomes of the carp (Cyprinus carpio) in comparison with those of the funa and the goldfish (Carassius auratus) Jpn. J. Genet. 1967;42:163–167. doi: 10.1266/jjg.42.163. DOI
Ojima Y., Takai A. Further cytogenetical studies on the origin of the gold-fish. Proc. Japan Acad. Ser. B Phys. Biol. Sci. 1979;55:346–350. doi: 10.2183/pjab.55.346. DOI
Gao Y., Wang S.Y., Luo J., Murphy R.W., Du R., Wu S.F., Zhu C.L., Li Y., Poyarkov A.D., Nguyen S.N., et al. Quaternary palaeoenvironmental oscillations drove the evolution of the eurasian Carassius auratus complex (cypriniformes, cyprinidae) J. Biogeogr. 2012;39:2264–2278. doi: 10.1111/j.1365-2699.2012.02755.x. DOI
Rylková K., Kalous L., Bohlen J., Lamatsch D.K., Petrtýl M. Phylogeny and biogeographic history of the cyprinid fish genus Carassius (Teleostei: Cyprinidae) with focus on natural and anthropogenic arrivals in Europe. Aquaculture. 2013;380–383:13–20. doi: 10.1016/j.aquaculture.2012.11.027. DOI
Cheng L., Lu C., Wang L., Li C., Yu X. Coexistence of three divergent mtdna lineages in northeast asia provides new insights into phylogeography of goldfish (Carssius auratus) Animals. 2020;10:1785. doi: 10.3390/ani10101785. PubMed DOI PMC
Takada M., Tachihara K., Kon T., Yamamoto G., Iguchi K., Miya M., Nishida M. Biogeography and evolution of the Carassius auratus-complex in East Asia. BMC Evol. Biol. 2010;10:7. doi: 10.1186/1471-2148-10-7. PubMed DOI PMC
Yamamoto G., Takada M., Iguchi K., Nishida M. Genetic constitution and phylogenetic relationships of Japanese crucian carps (Carassius) Ichthyol. Res. 2010;57:215–222. doi: 10.1007/s10228-010-0152-8. DOI
Iguchi K., Yamamoto G., Matsubara N., Nishida M. Morphological and genetic analysis of fish of a Carassius complex (Cyprinidae) in Lake Kasumigaura with reference to the taxonomic status of two all-female triploid morphs. Biol. J. Linn. Soc. 2003;79:351–357. doi: 10.1046/j.1095-8312.2003.00196.x. DOI
Berg L.S. Über Carassius carassius und C. gibelio. Zool. Anz. 1932;98:15–18.
Kalous L., Knytl M. Karyotype diversity of the offspring resulting from reproduction experiment between diploid male and triploid female of silver Prussian carp, Carassius gibelio (Cyprinidae, Actinopterygii) Folia Zool. 2011;60:115–121. doi: 10.25225/fozo.v60.i2.a5.2011. DOI
Zhou L., Wang Y., Gui J.F. Genetic Evidence for Gonochoristic Reproduction in Gynogenetic Silver Crucian Carp (Carassius auratus gibelio Bloch) as Revealed by RAPD Assays. J. Mol. Evol. 2000;51:498–506. doi: 10.1007/s002390010113. PubMed DOI
Wen M., Feron R., Pan Q., Guguin J., Jouanno E., Herpin A., Klopp C., Cabau C., Zahm M., Parrinello H., et al. Sex chromosome and sex locus characterization in goldfish, Carassius auratus (Linnaeus, 1758) BMC Genom. 2020;21:1–12. doi: 10.1186/s12864-020-06959-3. PubMed DOI PMC
Balon E.K. About the oldest domesticates among fishes. J. Fish Biol. 2004;65:1–27. doi: 10.1111/j.0022-1112.2004.00563.x. DOI
Hänfling B., Bolton P., Harley M., Carvalho G.R., Hanfling B., Bolton P., Harley M., Carvalho G.R. A molecular approach to detect hybridisation between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius spp. and Cyprinus carpio) Freshw. Biol. 2005;50:403–417. doi: 10.1111/j.1365-2427.2004.01330.x. DOI
Knytl M., Kalous L., Symonová R., Rylková K., Ráb P. Chromosome Studies of European Cyprinid Fishes: Cross-Species Painting Reveals Natural Allotetraploid Origin of a Carassius Female with 206 Chromosomes. Cytogenet. Genome Res. 2013;139:276–283. doi: 10.1159/000350689. PubMed DOI
Paepke H.-J. Thesis Zoologicae 31. ARG Gantner Verlag KG; Lund, Sweden: 1999. Bloch’s Fish Collection in the Museum fur Naturkunde der Humboldt-Universitat zu Berlin: An Illustrated Catalog and Historical Account.
Sakai H., Iguchi K., Yamazaki Y., Sideleva V.G., Goto A. Morphological and mtDNA sequence studies on three crucian carps (Carassius: Cyprinidae) including a new stock from the Ob river system, Kazakhstan. J. Fish Biol. 2009;74:1756–1773. doi: 10.1111/j.1095-8649.2009.02203.x. PubMed DOI
Makino S. Notes on the chromosomes of some fresh-water Teleosts. Jpn. J. Genet. 1934;9:100–103.
Cherfas N.B. Natural triploidy in females of the unisexual form of silver crucian carp (Carassius auratus gibelio Bloch) Genetika. 1966;5:16–24.
Knytl M., Fornaini N.R. Measurement of Chromosomal Arms and FISH Reveal Complex Genome Architecture and Standardized Karyotype of Model Fish, Genus Carassius. Cells. 2021;10:2343. doi: 10.3390/cells10092343. PubMed DOI PMC
Zan R.G., Song Z. Analysis and comparison between the karyotypes of Cyprinus carpio and Carassius auratus as well as Aristichthys nobilis and Hypophthalmichthys molitrix. Acta Genet. Sin. 1980;7:72–77.
Zan R.G. Studies of sex chromosomes and C-banding karyotypes of two forms of Carassius auratus in Kunming Lake. Acta Genet. Sin. 1982;9:32–39.
Wang R.F., Shi L.M., He W.S. A Comparative Study of the Ag-NORS of Carassius auratus from Different Geographic Districts. Zool. Res. 1988;9:165–169.
Wang R.F., Shi L.M., He W.S. The karyotype of Carassius auratus from ER hai Lake. Zool. Res. 1989;10:169–170.
Kobayasi H., Ochi H., Takeuchi N. Chromosome studies of the silver crucian carps (Carassius auratus gibelio) from the valley of the Amur river, and their progenies. Jpn. Women’s Univ. 1973;20:83–88.
Sofradžija A., Berberović L., Hadžiselimović R. Hromosomske garniture karaša (Carassius carassius) i babuške (Carassius auratus gibelio) Ichthyologia. 1978;10:135–148.
Peňáz M., Rab P., Prokeš M. Acta Scientiarum Naturalium Academiae Scientiarum Bohemoslovacae, Brno. Nova Series. Academia; Prague, Czech Republic: 1979. Cytological Analysis, Gynogenesis and Early Development of Carassius auratus gibelio; pp. 1–33.
Vujosevic M., Zivkovic C., Desanka R., Jurisic S., Cakic P. The chromosomes of 9 fish species from Dunav basin in Yugoslavia. Ichthyologia. 1983;15:29–40.
Mayr B., Ráb P., Kalat M. NORs and counterstain-enhanced fluorescence studies in Cyprinidae of different ploidy level. Genetica. 1986;69:111–118. doi: 10.1007/BF00115130. PubMed DOI
Fister S., Soldatovic B. Karyotype analysis of a gynogenetic population of Carassius auratus gibelio Bloch (Cyprinidae) from Pancevacki Rit [Yugoslavia] Acta Vet. 1989;39:259–267.
Fan Z., Shen J. Studies on the evolution of bisexual reproduction in crucian carp (Carassius auratus gibelio Bloch) Aquaculture. 1990;84:235–244. doi: 10.1016/0044-8486(90)90089-6. DOI
Boron A. Karyotypes of diploid and triploid silver crucian carp Carassius auratus gibelio (Bloch) Cytobios. 1994;80:117–124.
Zhou L., Gui J.F. Karyotypic diversity in polyploid gibel carp, Carassius auratus gibelio Bloch. Genetica. 2002;115:223–232. doi: 10.1023/A:1020102409270. PubMed DOI
Boroń A., Szlachciak J., Juchno D., Grabowska A., Jagusztyn B., Porycka K. Karyotype, morphology, and reproduction ability of the Prussian carp, Carassius gibelio (Actinopterygii: Cypriniformes: Cyprinidae), from unisexual and bisexual populations in Poland. Acta Ichthyol. Piscat. 2011;41:19–28. doi: 10.3750/AIP2011.41.1.04. DOI
Kobayasi H., Kawashima Y., Takeuchi N. Comparative Chromosome Studies in the Genus Carassius, Especially with a Finding of Polyploidy in the Ginbuna (C. auratus langsdorfii) Jpn. J. Ichthyol. 1970;17:153–160. doi: 10.11369/JJI1950.17.153. DOI
Kobayasi H., Ochi H., Takeuchi N. Chromosome studies in the genus Carassius: Comparison of C. auratus grandoculis, C. auratus buergeri, and C. auratus langsdorfii. Jpn. J. Ichthyol. 1973;20:6. doi: 10.11369/jji1950.20.7. DOI
Muramoto J.A. Note on Triploidy of the Funa. Proc. Jpn. Acad. 1975;51:583–587. doi: 10.2183/pjab1945.51.583. DOI
Kobayasi H., Nakano K., Nakamura M. On the hybrids, 4n Ginbuna (Carassius auratus langsdorfii) x Kinbuna (C. auratus subsp.), and their chromosomes. Bull. Jpn. Soc. Sci. Fish. 1977;43:31–37. doi: 10.2331/suisan.43.31. DOI
Kalous L., Šlechtová V., Bohlen J., Petrtýl M., Švátora M. First European record of Carassius langsdorfii from the Elbe basin. J. Fish Biol. 2007;70:132–138. doi: 10.1111/j.1095-8649.2006.01290.x. DOI
Ojima Y., Hitotsumachi S., Makino S. Cytogenetic Studies in Lower Vertebrates. I A Preliminary Report on the Chromosomes of the Funa (Carassius auratus) and Gold-fish (A Revised Study) Proc. Jpn. Acad. 1966;42:62–66. doi: 10.2183/pjab1945.42.62. DOI
Ueda T., Ojima Y. Differential Chromosomal Characteristics in the Funa Subspecies (Carassius) Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 1978;54:283–288. doi: 10.2183/pjab.54.283. DOI
Ojima Y., Yamano T. The assignment of the nucleolar organizer in the chromosomes of the funa (Carassius, cyprinidae, pisces) Proc. Jpn. Acad. Ser. B. 1980;56:551–556. doi: 10.2183/pjab.56.551. DOI
Knytl M., Kalous L., Rab P. Karyotype and chromosome banding of endangered crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae) Comp. Cytogenet. 2013;7:205–213. doi: 10.3897/compcytogen.v7i3.5411. PubMed DOI PMC
Spoz A., Boron A., Porycka K., Karolewska M., Ito D., Abe S., Kirtiklis L., Juchno D. Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes. Comp. Cytogenet. 2014;8:233–248. doi: 10.3897/compcytogen.v8i3.7718. PubMed DOI PMC
Xiao J., Zou T., Chen Y., Chen L., Liu S., Tao M., Zhang C., Zhao R., Zhou Y., Long Y., et al. Coexistence of diploid, triploid and tetraploid crucian carp (Carassius auratus) in natural waters. BMC Genet. 2011;12:20. doi: 10.1186/1471-2156-12-20. PubMed DOI PMC
Jiang F.F., Wang Z.W., Zhou L., Jiang L., Zhang X.J., Apalikova O.V., Brykov V.A., Gui J.F. High male incidence and evolutionary implications of triploid form in northeast Asia Carassius auratus complex. Mol. Phylogenet. Evol. 2013;66:350–359. doi: 10.1016/j.ympev.2012.10.006. PubMed DOI
Liu S., Liu Y., Zhou G., Zhang X., Luo C., Feng H., He X., Zhu G., Yang H. The formation of tetraploid stocks of red crucian carp×common carp hybrids as an effect of interspecific hybridization. Aquaculture. 2001;192:171–186. doi: 10.1016/S0044-8486(00)00451-8. DOI
Shao G.M., Li X.Y., Wang Y., Wang Z.W., Li Z., Zhang X.J., Zhou L., Gui J.F. Whole genome incorporation and epigenetic stability in a newly synthetic allopolyploid of gynogenetic gibel carp. Genome Biol. Evol. 2018;10:2394–2407. doi: 10.1093/gbe/evy165. PubMed DOI PMC
Ohno S. Evolution by Gene Duplication. Springer; Berlin/Heidelberg, Germany: 1970. DOI
Takai A., Ojima Y. The assignment of the nucleolus organizer regions in the chromosomes of the carp, the funa and their hybrids (Cyprinidae, Pisces) Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 1982;58:303–306. doi: 10.2183/pjab.58.303. DOI
Knytl M., Smolík O., Kubíčková S., Tlapáková T., Evans B.J., Krylov V. Chromosome divergence during evolution of the tetraploid clawed frogs, Xenopus mellotropicalis and Xenopus epitropicalis as revealed by Zoo-FISH. PLoS ONE. 2017;12:e0177087. doi: 10.1371/journal.pone.0177087. PubMed DOI PMC
Cioffi M.d.B., Ráb P., Ezaz T., Bertollo L.A.C., Lavoué S., de Oliveira E.A., Sember A., Molina W.F., de Souza F.H.S., Majtánová Z., et al. Deciphering the evolutionary history of arowana fishes (Teleostei, osteoglossiformes, osteoglossidae): Insight from comparative cytogenomics. Int. J. Mol. Sci. 2019;20:4296. doi: 10.3390/ijms20174296. PubMed DOI PMC
Molina W.F., Costa G.W., Cunha I.M., Bertollo L.A., Ezaz T., Liehr T., Cioffi M.B. Molecular cytogenetic analysis in freshwater prawns of the genus macrobrachium (Crustacea: Decapoda: Palaemonidae) Int. J. Mol. Sci. 2020;21:2599. doi: 10.3390/ijms21072599. PubMed DOI PMC
Saenjundaeng P., Supiwong W., Sassi F.M., Bertollo L.A., Rab P., Kretschmer R., Tanomtong A., Suwannapoom C., Reungsing M., De Bello Cioffi M. Chromosomes of asian cyprinid fishes: Variable karyotype patterns and evolutionary trends in the genus osteochilus (cyprinidae, labeoninae, “osteochilini”) Genet. Mol. Biol. 2020;43:1–8. doi: 10.1590/1678-4685-gmb-2020-0195. PubMed DOI PMC
Mazzoleni S., Rovatsos M., Schillaci O., Dumas F. Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes. Comp. Cytogenet. 2018;12:27–40. doi: 10.3897/compcytogen.v12i1.19381. PubMed DOI PMC
Milioto V., Vlah S., Mazzoleni S., Rovatsos M., Dumas F. Chromosomal Localization of 18S-28S rDNA and (TTAGGG)n Sequences in Two South African Dormice of the Genus Graphiurus (Rodentia: Gliridae) Cytogenet. Genome Res. 2019;158:145–151. doi: 10.1159/000500985. PubMed DOI
Scardino R., Milioto V., Proskuryakova A.A., Serdyukova N.A., Perelman P.L., Dumas F. Evolution of the Human Chromosome 13 Synteny: Evolutionary Rearrangements, Plasticity, Human Disease Genes and Cancer Breakpoints. Genes. 2020;11:383. doi: 10.3390/genes11040383. PubMed DOI PMC
Sember A., Pelikánová Š., de Bello Cioffi M., Šlechtová V., Hatanaka T., Do Doan H., Knytl M., Ráb P. Taxonomic Diversity Not Associated with Gross Karyotype Differentiation: The Case of Bighead Carps, Genus Hypophthalmichthys (Teleostei, Cypriniformes, Xenocyprididae) Genes. 2020;11:479. doi: 10.3390/genes11050479. PubMed DOI PMC
Kostmann A., Augstenová B., Frynta D., Kratochvíl L., Rovatsos M. Cytogenetically elusive sex chromosomes in scincoidean lizards. Int. J. Mol. Sci. 2021;22:8670. doi: 10.3390/ijms22168670. PubMed DOI PMC
Sumida M., Kato Y., Kurabayashi A. Sequencing and analysis of the internal transcribed spacers (ITSs) and coding regions in the EcoR I fragment of the ribosomal DNA of the Japanese pond frog Rana nigromaculata. Genes Genet. Syst. 2004;79:105–118. doi: 10.1266/ggs.79.105. PubMed DOI
Knytl M., Kalous L., Rylková K., Choleva L., Merilä J., Ráb P. Morphologically indistinguishable hybrid Carassius female with 156 chromosomes: A threat for the threatened crucian carp, C. carassius, L. PLoS ONE. 2018;13:e0190924. doi: 10.1371/journal.pone.0190924. PubMed DOI PMC
Zhu H.P., Ma D.M., Gui J.F. Triploid origin of the gibel carp as revealed by 5S rDNA localization and chromosome painting. Chromosom. Res. 2006;14:767–776. doi: 10.1007/s10577-006-1083-0. PubMed DOI
Murakami M., Fujitani H. Characterization of repetitive DNA sequences carrying 5S rDNA of the triploid ginbuna (Japanese silver crucian carp, Carassius auratus langsdorfi) Genes Genet. Syst. 1998;73:9–20. doi: 10.1266/ggs.73.9. PubMed DOI
Dong J., Murakami M., Fujimoto T., Yamaha E., Arai K. Genetic characterization of the progeny of a pair of the tetraploid silver crucian carp Carassius auratus langsdorfii. Fish. Sci. 2013;79:935–941. doi: 10.1007/s12562-013-0674-x. DOI
Zhu H.P., Gui J.F. Identification of genome organization in the unusual allotetraploid form of Carassius auratus gibelio. Aquaculture. 2007;265:109–117. doi: 10.1016/j.aquaculture.2006.10.026. DOI
Lu M., Wang Z.W., Hu C.J., Zhou L., Gui J.F. Genetic identification of a newly synthetic allopolyploid strain with 206 chromosomes in polyploid gibel carp. Aquac. Res. 2018;49:1–10. doi: 10.1111/are.13485. DOI
Hubbs C.L., Hubbs L.C. Apparent Parthenogenesis in Nature, in a Form of Fish of Hybrid Origin. Science. 1932;76:628–630. doi: 10.1126/science.76.1983.628. PubMed DOI
Neaves W.B., Baumann P. Unisexual reproduction among vertebrates. Trends Genet. 2011;27:81–88. doi: 10.1016/j.tig.2010.12.002. PubMed DOI
Jiang Y.G., Liang S.C., Chen B.D., Yu H.X., Shan S.X., Yang D., Lin S., Shen G., Chen B.D., Liang S.C., et al. Biological effect of heterologous sperm on gynogenetic offspring in Carassius auratus gibelio. Acta Hydrobiol. Sin. 1983;8:1–16.
Yi M.S., Li Y.Q., Liu J.D., Zhou L., Yu Q.X., Gui J.F. Molecular cytogenetic detection of paternal chromosome fragments in allogynogenetic gibel carp, Carassius auratus gibelio Bloch. Chromosom. Res. 2003;11:665–671. doi: 10.1023/A:1025985625706. PubMed DOI
Gui J., Zhou L. Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio. Sci. China Life Sci. 2010;53:409–415. doi: 10.1007/s11427-010-0092-6. PubMed DOI
Zhang J., Sun M., Zhou L., Li Z., Liu Z., Li X.Y., Liu X.L., Liu W., Gui J.F. Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio. Sci. Rep. 2015;5:10898. doi: 10.1038/srep10898. PubMed DOI PMC
Yamashita M., Jiang J., Onozato H., Nakanishi T., Nagahama Y. A Tripolar Spindle Formed at Meiosis I Assures the Retention of the Original Ploidy in the Gynogenetic Triploid Crucian Carp, Ginbuna Carassius auratus langsdorfii. (fish oocytes/gynogenesis/meiosis/spindle formation/histone H1 kinase) Dev. Growth Differ. 1993;35:631–636. doi: 10.1111/j.1440-169X.1993.00631.x. PubMed DOI
Toth B., Varkonyi E., Hidas A., Edvine Meleg E., Varadi L. Genetic analysis of offspring from intra- and interspecific crosses of Carassius auratus gibelio by chromosome and RAPD analysis. J. Fish Biol. 2005;66:784–797. doi: 10.1111/j.0022-1112.2005.00644.x. DOI
Flajšhans M., Rodina M., Halačka K., Vetešník L., Gela D., Lusková V., Lusk S. Characteristics of sperm of polyploid Prussian carp Carassius gibelio. J. Fish Biol. 2008;73:323–328. doi: 10.1111/j.1095-8649.2008.01937.x. DOI
Chiarelli B., Ferrantelli O., Cucchi C. The caryotype of some teleostea fish obtained by tissue culture in vitro. Experientia. 1969;25:426–427. doi: 10.1007/BF01899963. PubMed DOI
Raicu P., Taisescu E., Banarescu P. Carassius carassius and Carassius auratus, a pair of diploid and tetraploid representative species (Pices, Cyprinidae) Cytologia. 1981;46:233–240. doi: 10.1508/cytologia.46.233. DOI
Gui J.F., Liang S.C., Zhu L.F., Jiang Y.G. Discovery of two different reproductive development modes of the eggs of artificial multiple tetraploid allogynogenetic Silver crucian carp. Chin. Sci. Bull. 1993;38:332–337.
Lamatsch D., Stöck M. Sperm-dependent parthenogenesis and hybridogenesis in teleost fishes. In: Schöne I., Martens K., van Dijk P., editors. Lost Sex. Springer; Dordrecht, The Netherlands: 2009. pp. 399–432.
Linhart O., Flajšhans M., Kvasnička P. Induced triploidy in the common carp (Cyprinus carpio L.): A comparison of two methods. Aquat. Living Resour. 1991;4:139–145. doi: 10.1051/alr:1991014. DOI
Prokešová Š., Ghaibour K., Liška F., Klein P., Fenclová T., Štiavnická M., Hošek P., Žalmanová T., Hošková K., Řimnáčová H., et al. Acute low-dose bisphenol S exposure affects mouse oocyte quality. Reprod. Toxicol. 2020;93:19–27. doi: 10.1016/j.reprotox.2019.12.005. PubMed DOI
Eng W.H., Ho W.S. Polyploidization using colchicine in horticultural plants: A review. Sci. Hortic. 2019;246:604–617. doi: 10.1016/j.scienta.2018.11.010. DOI
Seroussi E., Knytl M., Pitel F., Elleder D., Krylov V., Leroux S., Morisson M., Yosefi S., Miyara S., Ganesan S., et al. Avian Expression Patterns and Genomic Mapping Implicate Leptin in Digestion and TNF in Immunity, Suggesting That Their Interacting Adipokine Role Has Been Acquired Only in Mammals. Int. J. Mol. Sci. 2019;20:4489. doi: 10.3390/ijms20184489. PubMed DOI PMC
Knytl M., Tlapakova T., Vankova T., Krylov V. Silurana Chromosomal Evolution: A New Piece to the Puzzle. Cytogenet. Genome Res. 2018;156:223–228. doi: 10.1159/000494708. PubMed DOI
Lampert K.P., Schartl M. The origin and evolution of a unisexual hybrid: Poecilia formosa. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008;363:2901–2909. doi: 10.1098/rstb.2008.0040. PubMed DOI PMC
Li J.T., Wang Q., Huang Yang M.D., Li Q.S., Cui M.S., Dong Z.J., Wang H.W., Yu J.H., Zhao Y.J., Yang C.R., et al. Parallel subgenome structure and divergent expression evolution of allo-tetraploid common carp and goldfish. Nat. Genet. 2021;53:1493–1503. doi: 10.1038/s41588-021-00933-9. PubMed DOI PMC
Wang Y., Li X.Y., Xu W.J., Wang K., Wu B., Xu M., Chen Y., Miao L.j., Wang Z.W., Li Z., et al. Comparative genome anatomy reveals evolutionary insights into a unique amphitriploid fish. Nat. Ecol. Evol. 2022 doi: 10.1038/s41559-022-01813-z. PubMed DOI PMC
Haynes G.D., Gongora J., Gilligan D.M., Grewe P., Moran C., Nicholas F.W. Cryptic hybridization and introgression between invasive Cyprinid species Cyprinus carpio and Carassius auratus in Australia: Implications for invasive species management. Anim. Conserv. 2012;15:83–94. doi: 10.1111/j.1469-1795.2011.00490.x. DOI
Wouters J., Janson S., Lusková V., Olsén K.H. Molecular identification of hybrids of the invasive gibel carp Carassius auratus gibelio and crucian carp Carassius carassius in Swedish waters. J. Fish Biol. 2012;80:2595–2604. doi: 10.1111/j.1095-8649.2012.03312.x. PubMed DOI
Papoušek I., Vetešník L., Halačka K., Lusková V., Humpl M., Mendel J. Identification of natural hybrids of gibel carp Carassius auratus gibelio (Bloch) and crucian carp Carassius carassius (L.) from lower Dyje River floodplain (Czech Republic) J. Fish Biol. 2008;72:1230–1235. doi: 10.1111/j.1095-8649.2007.01783.x. DOI
Smartt J. A possible genetic basis for species replacement: Preliminary results of interspecific hybridisation between native crucian carp Carassius carassius (L.) and introduced goldfish Carassius auratus (L.) Aquat. Invasions. 2007;2:59–62. doi: 10.3391/ai.2007.2.1.7. DOI
Mezhzherin S.V., Kokodii S.V., Kulish A.V., Verlatii D.B., Fedorenko L.V. Hybridization of crucian carp Carassius carassius (Linnaeus, 1758) in Ukrainian reservoirs and the genetic structure of hybridsHybridization of crucian carp Carassius carassius (Linnaeus, 1758) in Ukrainian reservoirs and the genetic structure of hybrids. Cytol. Genet. 2012;46:28–35. doi: 10.3103/S0095452712010069. PubMed DOI
Targueta C.P., Krylov V., Nondilo T.E., Lima J., Lourenço L.B. Sex chromosome evolution in frogs—Helpful insights from chromosome painting in the genus Engystomops. Heredity. 2021;126:396–409. doi: 10.1038/s41437-020-00385-7. PubMed DOI PMC
Knytl M., Fornaini N.R., Bergelová B., Gvoždík V., Černohorská H., Kubíčková S., Fokam E.B., Evans B.J., Krylov V. Divergent Subgenome Evolution in the Allotetraploid Frog Xenopus Calcaratus. PREPRINT, Version 2, available at Research Square. [(accessed on 9 June 2022)]. pp. 1–30. Available online: https://www.researchsquare.com/article/rs-1690259/v2. PubMed DOI
Perdikaris C., Ergolavou A., Gouva E., Nathanailides C., Chantzaropoulos A., Paschos I. Carassius gibelio in Greece: The dominant naturalised invader of freshwaters. Rev. Fish Biol. Fish. 2012;22:17–27. doi: 10.1007/s11160-011-9216-8. DOI
Elgin E., Tunna H., Jackson L. First confirmed records of Prussian carp, Carassius gibelio (Bloch, 1782) in open waters of North America. BioInvasions Rec. 2014;3:275–282. doi: 10.3391/bir.2014.3.4.09. DOI
Khosravi M., Abdoli A., Tajbakhsh F., Ahmadzadeh F., Nemati H., Kiabi B.H. An Effort toward Species Delimitation in the Genus Carassius (Cyprinidae) using Morphology and the Related Challenges: A Case Study from Inland Waters of Iran. J. Ichthyol. 2022;62:185–194. doi: 10.1134/S0032945222020096. DOI
Sayer C.D., Copp G.H., Emson D., Godard M.J., Ziȩba G., Wesley K.J. Towards the conservation of crucian carp Carassius carassius: Understanding the extent and causes of decline within part of its native English range. J. Fish Biol. 2011;79:1608–1624. doi: 10.1111/j.1095-8649.2011.03059.x. PubMed DOI
Tarkan A.S., Gaygusuz Ö., Gürsoy Gaygusuz Ç., Saç G., Copp G.H. Circumstantial evidence of gibel carp, Carassius gibelio, reproductive competition exerted on native fish species in a mesotrophic reservoir. Fish. Manag. Ecol. 2012;19:167–177. doi: 10.1111/j.1365-2400.2011.00839.x. DOI
Lively C.M., Craddock C., Vrijenhoek R.C. Red Queen hypothesis supported by parasitism in sexual and clonal fish. Nature. 1990;344:864–866. doi: 10.1038/344864a0. DOI
Daněk T., Kalous L., Veselý T., Krásová E., Reschová S., Rylková K., Kulich P., Petrtýl M., Pokorová D., Knytl M. Massive mortality of Prussian carp Carassius gibelio in the upper Elbe basin associated with herpesviral hematopoietic necrosis (CyHV-2) Dis. Aquat. Organ. 2012;102:87–95. doi: 10.3354/dao02535. PubMed DOI
Boitard P.M., Baud M., Labrut S., de Boisséson C., Jamin M., Bigarré L. First detection of Cyprinid Herpesvirus 2 (CyHV-2) in goldfish (Carassius auratus) in France. J. Fish Dis. 2016;39:673–680. doi: 10.1111/jfd.12400. PubMed DOI
Ito T., Kurita J., Haenen O. Importation of CyHV-2-infected goldfish into the Netherlands. Dis. Aquat. Organ. 2017;126:51–62. doi: 10.3354/dao03157. PubMed DOI
Ouyang P., Zhou Y., Wang K., Geng Y., Lai W., Huang X., Chen D., Guo H., Fang J., Chen Z., et al. First report of Cyprinid herpesvirus 2 outbreak in cultured gibel carp, Carassius auratus gibelio at low temperature. J. World Aquac. Soc. 2020;51:1208–1220. doi: 10.1111/jwas.12681. DOI
Thangaraj R.S., Nithianantham S.R., Dharmaratnam A., Kumar R., Pradhan P.K., Thangalazhy Gopakumar S., Sood N. Cyprinid herpesvirus-2 (CyHV-2): A comprehensive review. Rev. Aquac. 2021;13:796–821. doi: 10.1111/raq.12499. DOI
Hakoyama H., Nishimura T., Matsubara N., Iguchi K. Difference in parasite load and nonspecific immune reaction between sexual and gynogenetic forms of Carassius auratus. Biol. J. Linn. Soc. 2001;72:401–407. doi: 10.1111/j.1095-8312.2001.tb01326.x. DOI
Devlin R.H., Nagahama Y. Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture. 2002;208:191–364. doi: 10.1016/S0044-8486(02)00057-1. DOI
Yamamoto T.O., Kajishima T. Sex hormone induction of sex reversal in the goldfish and evidence for male heterogamity. J. Exp. Zool. 1968;168:215–221. doi: 10.1002/jez.1401680209. PubMed DOI
Goto-Kazeto R., Abe Y., Masai K., Yamaha E., Adachi S., Yamauchi K. Temperature-dependent sex differentiation in goldfish: Establishing the temperature-sensitive period and effect of constant and fluctuating water temperatures. Aquaculture. 2006;254:617–624. doi: 10.1016/j.aquaculture.2005.10.009. DOI
Li X.Y., Gui J.F. Diverse and variable sex determination mechanisms in vertebrates. Sci. China Life Sci. 2018;61:1503–1514. doi: 10.1007/s11427-018-9415-7. PubMed DOI
Rissanen E., Tranberg H.K., Sollid J., Nilsson G.E., Nikinmaa M. Temperature regulates hypoxia-inducible factor-1 (HIF-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius) J. Exp. Biol. 2006;209:994–1003. doi: 10.1242/jeb.02103. PubMed DOI
Yadrenkina E.N. Appearance of hermaphrodite individuals in the crucian population (Carassius auratus, Cyprinidae) during the regression phase of the water level in Chany Lake (Western Siberia) Limnology. 2020;21:287–295. doi: 10.1007/s10201-020-00615-1. DOI
Burke J.M., Arnold M.L. Genetics and the Fitness of Hybrids. Annu. Rev. Genet. 2001;35:31–52. doi: 10.1146/annurev.genet.35.102401.085719. PubMed DOI
Nolte A.W., Tautz D. Understanding the onset of hybrid speciation. Trends Genet. 2010;26:54–58. doi: 10.1016/j.tig.2009.12.001. PubMed DOI
Janko K., Pačes J., Wilkinson-Herbots H., Costa R.J., Roslein J., Drozd P., Iakovenko N., Rídl J., Hroudová M., Kočí J., et al. Hybrid asexuality as a primary postzygotic barrier between nascent species: On the interconnection between asexuality, hybridization and speciation. Mol. Ecol. 2018;27:248–263. doi: 10.1111/mec.14377. PubMed DOI PMC
Mallet J. Hybrid speciation. Nature. 2007;446:279–283. doi: 10.1038/nature05706. PubMed DOI
Li X.Y., Liu X.L., Zhu Y.J., Zhang J., Ding M., Wang M.T., Wang Z.W., Li Z., Zhang X.J., Zhou L., et al. Origin and transition of sex determination mechanisms in a gynogenetic hexaploid fish. Heredity. 2018;121:64–74. doi: 10.1038/s41437-017-0049-7. PubMed DOI PMC
Cauret C.M.S., Gansauge M.T., Tupper A.S., Furman B.L.S., Knytl M., Song X.Y., Greenbaum E., Meyer M., Evans B.J. Developmental Systems Drift and the Drivers of Sex Chromosome Evolution. Mol. Biol. Evol. 2020;37:799–810. doi: 10.1093/molbev/msz268. PubMed DOI
Furman B.L.S., Cauret C.M.S., Knytl M., Song X.Y., Premachandra T., Ofori-Boateng C., Jordan D.C., Horb M.E., Evans B.J. A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genet. 2020;16:e1009121. doi: 10.1371/journal.pgen.1009121. PubMed DOI PMC
Song X.Y., Furman B.L.S., Premachandra T., Knytl M., Cauret C.M.S., Wasonga D.V., Measey J., Dworkin I., Evans B.J. Sex chromosome degeneration, turnover, and sex-biased expression of sex-linked transcripts in African clawed frogs (Xenopus) Philos. Trans. R. Soc. B Biol. Sci. 2021;376:20200095. doi: 10.1098/rstb.2020.0095. PubMed DOI PMC
Yoshimoto S., Okada E., Umemoto H., Tamura K., Uno Y., Nishida-Umehara C., Matsuda Y., Takamatsu N., Shiba T., Ito M. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl. Acad. Sci. USA. 2008;105:2469–2474. doi: 10.1073/pnas.0712244105. PubMed DOI PMC
Meccariello A., Salvemini M., Primo P., Hall B., Koskinioti P., Dalíková M., Gravina A., Gucciardino M.A., Forlenza F., Gregoriou M.E., et al. Maleness-on-the-Y (MoY) orchestrates male sex determination in major agricultural fruit fly pests. Science. 2019;365:1457–1460. doi: 10.1126/science.aax1318. PubMed DOI
Rossi A., Kontarakis Z., Gerri C., Nolte H., Hölper S., Krüger M., Stainier D.Y. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature. 2015;524:230–233. doi: 10.1038/nature14580. PubMed DOI
Liu Q., Qi Y., Liang Q., Song J., Liu J., Li W., Shu Y., Tao M., Zhang C., Qin Q., et al. Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny. Sci. China Life Sci. 2019;62:1194–1202. doi: 10.1007/s11427-018-9404-7. PubMed DOI
Yin F., Liu W., Chai J., Lu B., Murphy R.W., Luo J. CRISPR/Cas9 application for gene copy fate survey of polyploid vertebrates. Front. Genet. 2018;9:260. doi: 10.3389/fgene.2018.00260. PubMed DOI PMC
Copp G.H., Warrington S., Wesley K.J. Management of an ornamental pond as a conservation site for a threatened native fish species, crucian carp Carassius carassius. Hydrobiologia. 2008;597:149–155. doi: 10.1007/s10750-007-9220-0. DOI