Avian Expression Patterns and Genomic Mapping Implicate Leptin in Digestion and TNF in Immunity, Suggesting That Their Interacting Adipokine Role Has Been Acquired Only in Mammals

. 2019 Sep 11 ; 20 (18) : . [epub] 20190911

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31514326

Grantová podpora
NPU I No. LO1419 Ministry of Education, Youth and Sports of the Czech Republic
1294/17 Israel Science Foundation

In mammals, leptin and tumor-necrosis factor (TNF) are prominent interacting adipokines mediating appetite control and insulin sensitivity. While TNF pleiotropically functions in immune defense and cell survival, leptin is largely confined to signaling energy stores in adipocytes. Knowledge about the function of avian leptin and TNF is limited and they are absent or lowly expressed in adipose, respectively. Employing radiation-hybrid mapping and FISH-TSA, we mapped TNF and its syntenic genes to chicken chromosome 16 within the major histocompatibility complex (MHC) region. This mapping position suggests that avian TNF has a role in regulating immune response. To test its possible interaction with leptin within the immune system and beyond, we compared the transcription patterns of TNF, leptin and their cognate receptors obtained by meta-analysis of GenBank RNA-seq data. While expression of leptin and its receptor (LEPR) were detected in the brain and digestive tract, TNF and its receptor mRNAs were primarily found in viral-infected and LPS-treated leukocytes. We confirmed leptin expression in the duodenum by immunohistochemistry staining. Altogether, we suggest that whereas leptin and TNF interact as adipokines in mammals, in birds, they have distinct roles. Thus, the interaction between leptin and TNF may be unique to mammals.

Zobrazit více v PubMed

Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J.M. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–432. doi: 10.1038/372425a0. PubMed DOI

Friedman J. The long road to leptin. J. Clin. Investig. 2016;126:4727–4734. doi: 10.1172/JCI91578. PubMed DOI PMC

Uysal K.T., Wiesbrock S.M., Marino M.W., Hotamisligil G.S. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997;389:610–614. doi: 10.1038/39335. PubMed DOI

Brenner D., Blaser H., Mak T.W. Regulation of tumour necrosis factor signalling: Live or let die. Nat. Rev. Immunol. 2015;15:362–374. doi: 10.1038/nri3834. PubMed DOI

Carbone F., La Rocca C., Matarese G. Immunological functions of leptin and adiponectin. Biochimie. 2012;94:2082–2088. doi: 10.1016/j.biochi.2012.05.018. PubMed DOI

Lord G.M., Matarese G., Howard J.K., Baker R.J., Bloom S.R., Lechler R.I. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. 1998;394:897–901. doi: 10.1038/29795. PubMed DOI

Loffreda S., Yang S.Q., Lin H.Z., Karp C.L., Brengman M.L., Wang D.J., Klein A.S., Bulkley G.B., Bao C., Noble P.W., et al. Leptin regulates proinflammatory immune responses. FASEB J. 1998;12:57–65. doi: 10.1096/fasebj.12.1.57. PubMed DOI

Chu C.Q. How much have we learnt about the TNF family of cytokines? Cytokine. 2018;101:1–3. doi: 10.1016/j.cyto.2017.05.004. PubMed DOI

Grunfeld C., Zhao C., Fuller J., Pollack A., Moser A., Friedman J., Feingold K.R. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J. Clin. Investig. 1996;97:2152–2157. doi: 10.1172/JCI118653. PubMed DOI PMC

Park H.K., Ahima R.S. Physiology of leptin: Energy homeostasis, neuroendocrine function and metabolism. Metabolism. 2015;64:24–34. doi: 10.1016/j.metabol.2014.08.004. PubMed DOI PMC

Magor K.E., Miranzo Navarro D., Barber M.R., Petkau K., Fleming-Canepa X., Blyth G.A., Blaine A.H. Defense genes missing from the flight division. Dev. Comp. Immunol. 2013;41:377–388. doi: 10.1016/j.dci.2013.04.010. PubMed DOI PMC

Dakovic N., Terezol M., Pitel F., Maillard V., Elis S., Leroux S., Lagarrigue S., Gondret F., Klopp C., Baeza E., et al. The loss of adipokine genes in the chicken genome and implications for insulin metabolism. Mol. Biol. Evol. 2014;31:2637–2646. doi: 10.1093/molbev/msu208. PubMed DOI

Bornelov S., Seroussi E., Yosefi S., Pendavis K., Burgess S.C., Grabherr M., Friedman-Einat M., Andersson L. Correspondence on Lovell et al.: Identification of chicken genes previously assumed to be evolutionarily lost. Genome Biol. 2017;18:112. doi: 10.1186/s13059-017-1231-1. PubMed DOI PMC

Rohde F., Schusser B., Hron T., Farkasova H., Plachy J., Hartle S., Hejnar J., Elleder D., Kaspers B. Characterization of chicken tumor necrosis factor-alpha, a long missed cytokine in birds. Front. Immunol. 2018;9:605. doi: 10.3389/fimmu.2018.00605. PubMed DOI PMC

Seroussi E., Cinnamon Y., Yosefi S., Genin O., Smith J.G., Rafati N., Bornelov S., Andersson L., Friedman-Einat M. Identification of the Long-Sought Leptin in Chicken and Duck Expression Pattern of the Highly GC-Rich Avian leptin Fits an Autocrine/Paracrine Rather Than Endocrine Function. Endocrinology. 2016;157:737–751. doi: 10.1210/en.2015-1634. PubMed DOI

Elleder D., Kaspers B. After TNF-alpha, still playing hide-and-seek with chicken genes. Poult. Sci. 2019 doi: 10.3382/ps/pez307. PubMed DOI

Rozenboim I., Mahato J., Cohen N.A., Tirosh O. Low protein and high-energy diet: A possible natural cause of fatty liver hemorrhagic syndrome in caged White Leghorn laying hens. Poult. Sci. 2016;95:612–621. doi: 10.3382/ps/pev367. PubMed DOI

Bridgham J.T., Johnson A.L. Expression and regulation of Fas antigen and tumor necrosis factor receptor type I in hen granulosa cells. Biol. Reprod. 2001;65:733–739. doi: 10.1095/biolreprod65.3.733. PubMed DOI

Abdalla S.A., Horiuchi H., Furusawa S., Matsuda H. Molecular study on chicken tumor necrosis factor receptor-II and tumor necrosis factor receptor-associated factor-5. Vet. Immunol. Immunopathol. 2004;98:31–41. doi: 10.1016/j.vetimm.2003.10.004. PubMed DOI

Horev G., Einat P., Aharoni T., Eshdat Y., Friedman-Einat M. Molecular cloning and properties of the chicken leptin-receptor (CLEPR) gene. Mol. Cell. Endocrinol. 2000;162:95–106. doi: 10.1016/S0303-7207(00)00205-7. PubMed DOI

Ohkubo T., Tanaka M., Nakashima K. Structure and tissue distribution of chicken leptin receptor (cOb-R) mRNA. Biochim. Biophys. Acta. 2000;1491:303–308. doi: 10.1016/S0167-4781(00)00046-4. PubMed DOI

Dunn I.C., Boswell T., Friedman-Einat M., Eshdat Y., Burt D.W., Paton I.R. Mapping of the leptin receptor gene (LEPR) to chicken chromosome 8. Anim. Genet. 2000;31:290. doi: 10.1046/j.1365-2052.2000.00652.x. PubMed DOI

Idriss H.T., Naismith J.H. TNF alpha and the TNF receptor superfamily: Structure-function relationship(s) Microsc. Res. Tech. 2000;50:184–195. doi: 10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H. PubMed DOI

Friedman-Einat M., Seroussi E. Quack leptin. BMC Genom. 2014;15:551. doi: 10.1186/1471-2164-15-551. PubMed DOI PMC

Friedman-Einat M., Cogburn L.A., Yosefi S., Hen G., Shinder D., Shirak A., Seroussi E. Discovery and characterization of the first genuine avian leptin gene in the rock dove (Columba livia) Endocrinology. 2014;155:3376–3384. doi: 10.1210/en.2014-1273. PubMed DOI

Prokop J.W., Schmidt C., Gasper D., Duff R.J., Milsted A., Ohkubo T., Ball H.C., Shawkey M.D., Mays H.L., Jr., Cogburn L.A., et al. Discovery of the elusive leptin in birds: Identification of several ‘missing links’ in the evolution of leptin and its receptor. PLoS ONE. 2014;9:e92751. doi: 10.1371/journal.pone.0092751. PubMed DOI PMC

Huang G., Li J., Wang H., Lan X., Wang Y. Discovery of a novel functional leptin protein (LEP) in zebra finches: Evidence for the existence of an authentic avian leptin gene predominantly expressed in the brain and pituitary. Endocrinology. 2014;155:3385–3396. doi: 10.1210/en.2014-1084. PubMed DOI

Farkasova H., Hron T., Pačes J., Pajer P., Elleder D. Identification of a GC-rich leptin gene in chicken. Agri Gene. 2016;1:88–92. doi: 10.1016/j.aggene.2016.04.001. DOI

Bornelov S., Seroussi E., Yosefi S., Benjamini S., Miyara S., Ruzal M., Grabherr M., Rafati N., Molin A.M., Pendavis K., et al. Comparative omics and feeding manipulations in chicken indicate a shift of the endocrine role of visceral fat towards reproduction. BMC Genom. 2018;19:295. doi: 10.1186/s12864-018-4675-0. PubMed DOI PMC

Nedwin G.E., Naylor S.L., Sakaguchi A.Y., Smith D., Jarrett-Nedwin J., Pennica D., Goeddel D.V., Gray P.W. Human lymphotoxin and tumor necrosis factor genes: Structure, homology and chromosomal localization. Nucleic Acids Res. 1985;13:6361–6373. doi: 10.1093/nar/13.17.6361. PubMed DOI PMC

Inoko H., Trowsdale J. Linkage of TNF genes to the HLA-B locus. Nucleic Acids Res. 1987;15:8957–8962. doi: 10.1093/nar/15.21.8957. PubMed DOI PMC

Kaufman J., Milne S., Gobel T.W., Walker B.A., Jacob J.P., Auffray C., Zoorob R., Beck S. The chicken B locus is a minimal essential major histocompatibility complex. Nature. 1999;401:923–925. doi: 10.1038/44856. PubMed DOI

Solinhac R., Leroux S., Galkina S., Chazara O., Feve K., Vignoles F., Morisson M., Derjusheva S., Bed’hom B., Vignal A., et al. Integrative mapping analysis of chicken microchromosome 16 organization. BMC Genom. 2010;11:616. doi: 10.1186/1471-2164-11-616. PubMed DOI PMC

Kaufman J. Generalists and specialists: A new view of how MHC Class I molecules fight infectious pathogens. Trends Immunol. 2018;39:367–379. doi: 10.1016/j.it.2018.01.001. PubMed DOI PMC

Warren W.C., Hillier L.W., Tomlinson C., Minx P., Kremitzki M., Graves T., Markovic C., Bouk N., Pruitt K.D., Thibaud-Nissen F., et al. A New Chicken Genome Assembly Provides Insight into Avian Genome Structure. G3 Genes Genomes Genet. 2017;7:109–117. doi: 10.1534/g3.116.035923. PubMed DOI PMC

Kuprash D.V., Alimzhanov M.B., Tumanov A.V., Grivennikov S.I., Shakhov A.N., Drutskaya L.N., Marino M.W., Turetskaya R.L., Anderson A.O., Rajewsky K., et al. Redundancy in tumor necrosis factor (TNF) and lymphotoxin (LT) signaling in vivo: Mice with inactivation of the entire TNF/LT locus versus single-knockout mice. Mol. Cell. Biol. 2002;22:8626–8634. doi: 10.1128/MCB.22.24.8626-8634.2002. PubMed DOI PMC

Morisson M., Lemiere A., Bosc S., Galan M., Plisson-Petit F., Pinton P., Delcros C., Feve K., Pitel F., Fillon V., et al. ChickRH6: A chicken whole-genome radiation hybrid panel. Genet. Sel. Evol. 2002;34:521–533. doi: 10.1186/1297-9686-34-4-521. PubMed DOI PMC

Deakin J.E., Papenfuss A.T., Belov K., Cross J.G., Coggill P., Palmer S., Sims S., Speed T.P., Beck S., Graves J.A. Evolution and comparative analysis of the MHC Class III inflammatory region. BMC Genom. 2006;7:281. doi: 10.1186/1471-2164-7-281. PubMed DOI PMC

Pasparakis M., Alexopoulou L., Episkopou V., Kollias G. Immune and inflammatory responses in TNF alpha-deficient mice: A critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 1996;184:1397–1411. doi: 10.1084/jem.184.4.1397. PubMed DOI PMC

Flier J.S. Lowered leptin slims immune response. Nat. Med. 1998;4:1124–1125. doi: 10.1038/2619. PubMed DOI

Naylor C., Petri W.A., Jr. Leptin Regulation of Immune Responses. Trends Mol. Med. 2016;22:88–98. doi: 10.1016/j.molmed.2015.12.001. PubMed DOI

Francisco V., Pino J., Campos-Cabaleiro V., Ruiz-Fernandez C., Mera A., Gonzalez-Gay M.A., Gomez R., Gualillo O. Obesity, Fat Mass and Immune System: Role for Leptin. Front. Physiol. 2018;9:640. doi: 10.3389/fphys.2018.00640. PubMed DOI PMC

Dong K., Chang S., Xie Q., Black-Pyrkosz A., Zhang H. Comparative transcriptomics of genetically divergent lines of chickens in response to Marek’s disease virus challenge at cytolytic phase. PLoS ONE. 2017;12:e0178923. doi: 10.1371/journal.pone.0178923. PubMed DOI PMC

Bacon L.D., Hunt H.D., Cheng H.H. A review of the development of chicken lines to resolve genes determining resistance to diseases. Poult. Sci. 2000;79:1082–1093. doi: 10.1093/ps/79.8.1082. PubMed DOI

Bush S.J., Freem L., MacCallum A.J., O’Dell J., Wu C., Afrasiabi C., Psifidi A., Stevens M.P., Smith J., Summers K.M., et al. Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken. BMC Genom. 2018;19:594. doi: 10.1186/s12864-018-4972-7. PubMed DOI PMC

Tan X., Hsueh W., Gonzalez-Crussi F. Cellular localization of tumor necrosis factor (TNF)-alpha transcripts in normal bowel and in necrotizing enterocolitis. TNF gene expression by Paneth cells, intestinal eosinophils, and macrophages. Am. J. Pathol. 1993;142:1858–1865. PubMed PMC

Santaolalla R., Abreu M.T. Innate immunity in the small intestine. Curr. Opin. Gastroenterol. 2012;28:124–129. doi: 10.1097/MOG.0b013e3283506559. PubMed DOI PMC

Bado A., Levasseur S., Attoub S., Kermorgant S., Laigneau J.P., Bortoluzzi M.N., Moizo L., Lehy T., Guerre-Millo M., Le Marchand-Brustel Y., et al. The stomach is a source of leptin. Nature. 1998;394:790–793. doi: 10.1038/29547. PubMed DOI

Peters J.H., Ritter R.C., Simasko S.M. Leptin and CCK selectively activate vagal afferent neurons innervating the stomach and duodenum. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006;290:R1544–R1549. doi: 10.1152/ajpregu.00811.2005. PubMed DOI

Yarandi S.S., Hebbar G., Sauer C.G., Cole C.R., Ziegler T.R. Diverse roles of leptin in the gastrointestinal tract: Modulation of motility, absorption, growth, and inflammation. Nutrition. 2011;27:269–275. doi: 10.1016/j.nut.2010.07.004. PubMed DOI PMC

Sambrook J.G., Figueroa F., Beck S. A genome-wide survey of Major Histocompatibility Complex (MHC) genes and their paralogues in zebrafish. BMC Genom. 2005;6:152. doi: 10.1186/1471-2164-6-152. PubMed DOI PMC

O’Hare T.H., Delany M.E. Genetic variation exists for telomeric array organization within and among the genomes of normal, immortalized, and transformed chicken systems. Chromosome Res. 2009;17:947–964. doi: 10.1007/s10577-009-9082-6. PubMed DOI PMC

Seroussi E., Pitel F., Leroux S., Morisson M., Bornelov S., Miyara S., Yosefi S., Cogburn L.A., Burt D.W., Andersson L., et al. Mapping of leptin and its syntenic genes to chicken chromosome 1p. BMC Genet. 2017;18:77. PubMed PMC

Wajant H., Siegmund D. TNFR1 and TNFR2 in the control of the life and death balance of macrophages. Front. Cell Dev. Biol. 2019;7:91. doi: 10.3389/fcell.2019.00091. PubMed DOI PMC

Wajant H., Pfizenmaier K., Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65. doi: 10.1038/sj.cdd.4401189. PubMed DOI

Cammisotto P., Bendayan M. A review on gastric leptin: The exocrine secretion of a gastric hormone. Anat. Cell Biol. 2012;45:1–16. doi: 10.5115/acb.2012.45.1.1. PubMed DOI PMC

Inagaki-Ohara K. Gastric leptin and tumorigenesis: Beyond obesity. Int. J. Mol. Sci. 2019;20:2622. doi: 10.3390/ijms20112622. PubMed DOI PMC

Darcel N.P., Liou A.P., Tome D., Raybould H.E. Activation of vagal afferents in the rat duodenum by protein digests requires PepT1. J. Nutr. 2005;135:1491–1495. doi: 10.1093/jn/135.6.1491. PubMed DOI

Pitel F., Abasht B., Morisson M., Crooijmans R.P., Vignoles F., Leroux S., Feve K., Bardes S., Milan D., Lagarrigue S., et al. A high-resolution radiation hybrid map of chicken chromosome 5 and comparison with human chromosomes. BMC Genom. 2004;5:66. doi: 10.1186/1471-2164-5-66. PubMed DOI PMC

de Givry S., Bouchez M., Chabrier P., Milan D., Schiex T. CARHTA GENE: Multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics. 2005;21:1703–1704. doi: 10.1093/bioinformatics/bti222. PubMed DOI

Voorrips R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002;93:77–78. doi: 10.1093/jhered/93.1.77. PubMed DOI

Plachy J. The chicken—A laboratory animal of the class Aves. Folia Biol.-Prague. 2000;46:17–23. PubMed

Federspiel M.J., Hughes S.H. Retroviral gene delivery. Method Cell Biol. 1997;52:179. PubMed

Courtet M., Flajnik M., Du Pasquier L. Major histocompatibility complex and immunoglobulin loci visualized by in situ hybridization on Xenopus chromosomes. Dev. Comp. Immunol. 2001;25:149–157. doi: 10.1016/S0145-305X(00)00045-8. PubMed DOI

Himly M., Foster D.N., Bottoli I., Iacovoni J.S., Vogt P.K. The DF-1 chicken fibroblast cell line: Transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology. 1998;248:295–304. doi: 10.1006/viro.1998.9290. PubMed DOI

Krylov V., Tlapakova T., Macha J. Localization of the single copy gene Mdh2 on Xenopus tropicalis chromosomes by FISH-TSA. Cytogenet. Genome Res. 2007;116:110–112. doi: 10.1159/000097427. PubMed DOI

Knytl M., Tlapakova T., Vankova T., Krylov V. Silurana Chromosomal Evolution: A new piece to the puzzle. Cytogenet. Genome Res. 2018;156:223–228. doi: 10.1159/000494708. PubMed DOI

Knytl M., Smolik O., Kubickova S., Tlapakova T., Evans B.J., Krylov V. Chromosome divergence during evolution of the tetraploid clawed frogs, Xenopus mellotropicalis and Xenopus epitropicalis as revealed by Zoo-FISH. PLoS ONE. 2017;12:e0177087. doi: 10.1371/journal.pone.0177087. PubMed DOI PMC

Carabajal Paladino L.Z., Nguyen P., Sichova J., Marec F. Mapping of single-copy genes by TSA-FISH in the codling moth, Cydia pomonella. BMC Genet. 2014;15(Suppl. 2):S15. doi: 10.1186/1471-2156-15-S2-S15. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...