Avian Expression Patterns and Genomic Mapping Implicate Leptin in Digestion and TNF in Immunity, Suggesting That Their Interacting Adipokine Role Has Been Acquired Only in Mammals
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NPU I No. LO1419
Ministry of Education, Youth and Sports of the Czech Republic
1294/17
Israel Science Foundation
PubMed
31514326
PubMed Central
PMC6770569
DOI
10.3390/ijms20184489
PII: ijms20184489
Knihovny.cz E-zdroje
- Klíčová slova
- FISH-TSA, TNF, chicken, digestive tract, duodenum, immune system, leptin, radiation-hybrid mapping,
- MeSH
- buněčné linie MeSH
- duodenum metabolismus MeSH
- kur domácí genetika metabolismus MeSH
- leptin genetika metabolismus MeSH
- leptinové receptory metabolismus MeSH
- mapování chromozomů * MeSH
- mapování pomocí radiačních hybridů MeSH
- messenger RNA genetika metabolismus MeSH
- metafáze genetika MeSH
- receptory TNF genetika metabolismus MeSH
- regulace genové exprese * MeSH
- savci genetika MeSH
- signální transdukce * MeSH
- syntenie genetika MeSH
- TNF-alfa genetika metabolismus MeSH
- trávení * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- leptin MeSH
- leptinové receptory MeSH
- messenger RNA MeSH
- receptory TNF MeSH
- TNF-alfa MeSH
In mammals, leptin and tumor-necrosis factor (TNF) are prominent interacting adipokines mediating appetite control and insulin sensitivity. While TNF pleiotropically functions in immune defense and cell survival, leptin is largely confined to signaling energy stores in adipocytes. Knowledge about the function of avian leptin and TNF is limited and they are absent or lowly expressed in adipose, respectively. Employing radiation-hybrid mapping and FISH-TSA, we mapped TNF and its syntenic genes to chicken chromosome 16 within the major histocompatibility complex (MHC) region. This mapping position suggests that avian TNF has a role in regulating immune response. To test its possible interaction with leptin within the immune system and beyond, we compared the transcription patterns of TNF, leptin and their cognate receptors obtained by meta-analysis of GenBank RNA-seq data. While expression of leptin and its receptor (LEPR) were detected in the brain and digestive tract, TNF and its receptor mRNAs were primarily found in viral-infected and LPS-treated leukocytes. We confirmed leptin expression in the duodenum by immunohistochemistry staining. Altogether, we suggest that whereas leptin and TNF interact as adipokines in mammals, in birds, they have distinct roles. Thus, the interaction between leptin and TNF may be unique to mammals.
Department of Biology Faculty of Science McMaster University Hamilton ON L8S4K1 Canada
Department of Medical Biochemistry and Microbiology Uppsala University SE 75123 Uppsala Sweden
GenPhySE Université de Toulouse INRA ENVT 31326 Castanet Tolosan France
Institute of Molecular Genetics of the Czech Academy of Sciences 14220 Prague Czech Republic
Zobrazit více v PubMed
Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J.M. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–432. doi: 10.1038/372425a0. PubMed DOI
Friedman J. The long road to leptin. J. Clin. Investig. 2016;126:4727–4734. doi: 10.1172/JCI91578. PubMed DOI PMC
Uysal K.T., Wiesbrock S.M., Marino M.W., Hotamisligil G.S. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997;389:610–614. doi: 10.1038/39335. PubMed DOI
Brenner D., Blaser H., Mak T.W. Regulation of tumour necrosis factor signalling: Live or let die. Nat. Rev. Immunol. 2015;15:362–374. doi: 10.1038/nri3834. PubMed DOI
Carbone F., La Rocca C., Matarese G. Immunological functions of leptin and adiponectin. Biochimie. 2012;94:2082–2088. doi: 10.1016/j.biochi.2012.05.018. PubMed DOI
Lord G.M., Matarese G., Howard J.K., Baker R.J., Bloom S.R., Lechler R.I. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. 1998;394:897–901. doi: 10.1038/29795. PubMed DOI
Loffreda S., Yang S.Q., Lin H.Z., Karp C.L., Brengman M.L., Wang D.J., Klein A.S., Bulkley G.B., Bao C., Noble P.W., et al. Leptin regulates proinflammatory immune responses. FASEB J. 1998;12:57–65. doi: 10.1096/fasebj.12.1.57. PubMed DOI
Chu C.Q. How much have we learnt about the TNF family of cytokines? Cytokine. 2018;101:1–3. doi: 10.1016/j.cyto.2017.05.004. PubMed DOI
Grunfeld C., Zhao C., Fuller J., Pollack A., Moser A., Friedman J., Feingold K.R. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J. Clin. Investig. 1996;97:2152–2157. doi: 10.1172/JCI118653. PubMed DOI PMC
Park H.K., Ahima R.S. Physiology of leptin: Energy homeostasis, neuroendocrine function and metabolism. Metabolism. 2015;64:24–34. doi: 10.1016/j.metabol.2014.08.004. PubMed DOI PMC
Magor K.E., Miranzo Navarro D., Barber M.R., Petkau K., Fleming-Canepa X., Blyth G.A., Blaine A.H. Defense genes missing from the flight division. Dev. Comp. Immunol. 2013;41:377–388. doi: 10.1016/j.dci.2013.04.010. PubMed DOI PMC
Dakovic N., Terezol M., Pitel F., Maillard V., Elis S., Leroux S., Lagarrigue S., Gondret F., Klopp C., Baeza E., et al. The loss of adipokine genes in the chicken genome and implications for insulin metabolism. Mol. Biol. Evol. 2014;31:2637–2646. doi: 10.1093/molbev/msu208. PubMed DOI
Bornelov S., Seroussi E., Yosefi S., Pendavis K., Burgess S.C., Grabherr M., Friedman-Einat M., Andersson L. Correspondence on Lovell et al.: Identification of chicken genes previously assumed to be evolutionarily lost. Genome Biol. 2017;18:112. doi: 10.1186/s13059-017-1231-1. PubMed DOI PMC
Rohde F., Schusser B., Hron T., Farkasova H., Plachy J., Hartle S., Hejnar J., Elleder D., Kaspers B. Characterization of chicken tumor necrosis factor-alpha, a long missed cytokine in birds. Front. Immunol. 2018;9:605. doi: 10.3389/fimmu.2018.00605. PubMed DOI PMC
Seroussi E., Cinnamon Y., Yosefi S., Genin O., Smith J.G., Rafati N., Bornelov S., Andersson L., Friedman-Einat M. Identification of the Long-Sought Leptin in Chicken and Duck Expression Pattern of the Highly GC-Rich Avian leptin Fits an Autocrine/Paracrine Rather Than Endocrine Function. Endocrinology. 2016;157:737–751. doi: 10.1210/en.2015-1634. PubMed DOI
Elleder D., Kaspers B. After TNF-alpha, still playing hide-and-seek with chicken genes. Poult. Sci. 2019 doi: 10.3382/ps/pez307. PubMed DOI
Rozenboim I., Mahato J., Cohen N.A., Tirosh O. Low protein and high-energy diet: A possible natural cause of fatty liver hemorrhagic syndrome in caged White Leghorn laying hens. Poult. Sci. 2016;95:612–621. doi: 10.3382/ps/pev367. PubMed DOI
Bridgham J.T., Johnson A.L. Expression and regulation of Fas antigen and tumor necrosis factor receptor type I in hen granulosa cells. Biol. Reprod. 2001;65:733–739. doi: 10.1095/biolreprod65.3.733. PubMed DOI
Abdalla S.A., Horiuchi H., Furusawa S., Matsuda H. Molecular study on chicken tumor necrosis factor receptor-II and tumor necrosis factor receptor-associated factor-5. Vet. Immunol. Immunopathol. 2004;98:31–41. doi: 10.1016/j.vetimm.2003.10.004. PubMed DOI
Horev G., Einat P., Aharoni T., Eshdat Y., Friedman-Einat M. Molecular cloning and properties of the chicken leptin-receptor (CLEPR) gene. Mol. Cell. Endocrinol. 2000;162:95–106. doi: 10.1016/S0303-7207(00)00205-7. PubMed DOI
Ohkubo T., Tanaka M., Nakashima K. Structure and tissue distribution of chicken leptin receptor (cOb-R) mRNA. Biochim. Biophys. Acta. 2000;1491:303–308. doi: 10.1016/S0167-4781(00)00046-4. PubMed DOI
Dunn I.C., Boswell T., Friedman-Einat M., Eshdat Y., Burt D.W., Paton I.R. Mapping of the leptin receptor gene (LEPR) to chicken chromosome 8. Anim. Genet. 2000;31:290. doi: 10.1046/j.1365-2052.2000.00652.x. PubMed DOI
Idriss H.T., Naismith J.H. TNF alpha and the TNF receptor superfamily: Structure-function relationship(s) Microsc. Res. Tech. 2000;50:184–195. doi: 10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H. PubMed DOI
Friedman-Einat M., Seroussi E. Quack leptin. BMC Genom. 2014;15:551. doi: 10.1186/1471-2164-15-551. PubMed DOI PMC
Friedman-Einat M., Cogburn L.A., Yosefi S., Hen G., Shinder D., Shirak A., Seroussi E. Discovery and characterization of the first genuine avian leptin gene in the rock dove (Columba livia) Endocrinology. 2014;155:3376–3384. doi: 10.1210/en.2014-1273. PubMed DOI
Prokop J.W., Schmidt C., Gasper D., Duff R.J., Milsted A., Ohkubo T., Ball H.C., Shawkey M.D., Mays H.L., Jr., Cogburn L.A., et al. Discovery of the elusive leptin in birds: Identification of several ‘missing links’ in the evolution of leptin and its receptor. PLoS ONE. 2014;9:e92751. doi: 10.1371/journal.pone.0092751. PubMed DOI PMC
Huang G., Li J., Wang H., Lan X., Wang Y. Discovery of a novel functional leptin protein (LEP) in zebra finches: Evidence for the existence of an authentic avian leptin gene predominantly expressed in the brain and pituitary. Endocrinology. 2014;155:3385–3396. doi: 10.1210/en.2014-1084. PubMed DOI
Farkasova H., Hron T., Pačes J., Pajer P., Elleder D. Identification of a GC-rich leptin gene in chicken. Agri Gene. 2016;1:88–92. doi: 10.1016/j.aggene.2016.04.001. DOI
Bornelov S., Seroussi E., Yosefi S., Benjamini S., Miyara S., Ruzal M., Grabherr M., Rafati N., Molin A.M., Pendavis K., et al. Comparative omics and feeding manipulations in chicken indicate a shift of the endocrine role of visceral fat towards reproduction. BMC Genom. 2018;19:295. doi: 10.1186/s12864-018-4675-0. PubMed DOI PMC
Nedwin G.E., Naylor S.L., Sakaguchi A.Y., Smith D., Jarrett-Nedwin J., Pennica D., Goeddel D.V., Gray P.W. Human lymphotoxin and tumor necrosis factor genes: Structure, homology and chromosomal localization. Nucleic Acids Res. 1985;13:6361–6373. doi: 10.1093/nar/13.17.6361. PubMed DOI PMC
Inoko H., Trowsdale J. Linkage of TNF genes to the HLA-B locus. Nucleic Acids Res. 1987;15:8957–8962. doi: 10.1093/nar/15.21.8957. PubMed DOI PMC
Kaufman J., Milne S., Gobel T.W., Walker B.A., Jacob J.P., Auffray C., Zoorob R., Beck S. The chicken B locus is a minimal essential major histocompatibility complex. Nature. 1999;401:923–925. doi: 10.1038/44856. PubMed DOI
Solinhac R., Leroux S., Galkina S., Chazara O., Feve K., Vignoles F., Morisson M., Derjusheva S., Bed’hom B., Vignal A., et al. Integrative mapping analysis of chicken microchromosome 16 organization. BMC Genom. 2010;11:616. doi: 10.1186/1471-2164-11-616. PubMed DOI PMC
Kaufman J. Generalists and specialists: A new view of how MHC Class I molecules fight infectious pathogens. Trends Immunol. 2018;39:367–379. doi: 10.1016/j.it.2018.01.001. PubMed DOI PMC
Warren W.C., Hillier L.W., Tomlinson C., Minx P., Kremitzki M., Graves T., Markovic C., Bouk N., Pruitt K.D., Thibaud-Nissen F., et al. A New Chicken Genome Assembly Provides Insight into Avian Genome Structure. G3 Genes Genomes Genet. 2017;7:109–117. doi: 10.1534/g3.116.035923. PubMed DOI PMC
Kuprash D.V., Alimzhanov M.B., Tumanov A.V., Grivennikov S.I., Shakhov A.N., Drutskaya L.N., Marino M.W., Turetskaya R.L., Anderson A.O., Rajewsky K., et al. Redundancy in tumor necrosis factor (TNF) and lymphotoxin (LT) signaling in vivo: Mice with inactivation of the entire TNF/LT locus versus single-knockout mice. Mol. Cell. Biol. 2002;22:8626–8634. doi: 10.1128/MCB.22.24.8626-8634.2002. PubMed DOI PMC
Morisson M., Lemiere A., Bosc S., Galan M., Plisson-Petit F., Pinton P., Delcros C., Feve K., Pitel F., Fillon V., et al. ChickRH6: A chicken whole-genome radiation hybrid panel. Genet. Sel. Evol. 2002;34:521–533. doi: 10.1186/1297-9686-34-4-521. PubMed DOI PMC
Deakin J.E., Papenfuss A.T., Belov K., Cross J.G., Coggill P., Palmer S., Sims S., Speed T.P., Beck S., Graves J.A. Evolution and comparative analysis of the MHC Class III inflammatory region. BMC Genom. 2006;7:281. doi: 10.1186/1471-2164-7-281. PubMed DOI PMC
Pasparakis M., Alexopoulou L., Episkopou V., Kollias G. Immune and inflammatory responses in TNF alpha-deficient mice: A critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 1996;184:1397–1411. doi: 10.1084/jem.184.4.1397. PubMed DOI PMC
Flier J.S. Lowered leptin slims immune response. Nat. Med. 1998;4:1124–1125. doi: 10.1038/2619. PubMed DOI
Naylor C., Petri W.A., Jr. Leptin Regulation of Immune Responses. Trends Mol. Med. 2016;22:88–98. doi: 10.1016/j.molmed.2015.12.001. PubMed DOI
Francisco V., Pino J., Campos-Cabaleiro V., Ruiz-Fernandez C., Mera A., Gonzalez-Gay M.A., Gomez R., Gualillo O. Obesity, Fat Mass and Immune System: Role for Leptin. Front. Physiol. 2018;9:640. doi: 10.3389/fphys.2018.00640. PubMed DOI PMC
Dong K., Chang S., Xie Q., Black-Pyrkosz A., Zhang H. Comparative transcriptomics of genetically divergent lines of chickens in response to Marek’s disease virus challenge at cytolytic phase. PLoS ONE. 2017;12:e0178923. doi: 10.1371/journal.pone.0178923. PubMed DOI PMC
Bacon L.D., Hunt H.D., Cheng H.H. A review of the development of chicken lines to resolve genes determining resistance to diseases. Poult. Sci. 2000;79:1082–1093. doi: 10.1093/ps/79.8.1082. PubMed DOI
Bush S.J., Freem L., MacCallum A.J., O’Dell J., Wu C., Afrasiabi C., Psifidi A., Stevens M.P., Smith J., Summers K.M., et al. Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken. BMC Genom. 2018;19:594. doi: 10.1186/s12864-018-4972-7. PubMed DOI PMC
Tan X., Hsueh W., Gonzalez-Crussi F. Cellular localization of tumor necrosis factor (TNF)-alpha transcripts in normal bowel and in necrotizing enterocolitis. TNF gene expression by Paneth cells, intestinal eosinophils, and macrophages. Am. J. Pathol. 1993;142:1858–1865. PubMed PMC
Santaolalla R., Abreu M.T. Innate immunity in the small intestine. Curr. Opin. Gastroenterol. 2012;28:124–129. doi: 10.1097/MOG.0b013e3283506559. PubMed DOI PMC
Bado A., Levasseur S., Attoub S., Kermorgant S., Laigneau J.P., Bortoluzzi M.N., Moizo L., Lehy T., Guerre-Millo M., Le Marchand-Brustel Y., et al. The stomach is a source of leptin. Nature. 1998;394:790–793. doi: 10.1038/29547. PubMed DOI
Peters J.H., Ritter R.C., Simasko S.M. Leptin and CCK selectively activate vagal afferent neurons innervating the stomach and duodenum. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006;290:R1544–R1549. doi: 10.1152/ajpregu.00811.2005. PubMed DOI
Yarandi S.S., Hebbar G., Sauer C.G., Cole C.R., Ziegler T.R. Diverse roles of leptin in the gastrointestinal tract: Modulation of motility, absorption, growth, and inflammation. Nutrition. 2011;27:269–275. doi: 10.1016/j.nut.2010.07.004. PubMed DOI PMC
Sambrook J.G., Figueroa F., Beck S. A genome-wide survey of Major Histocompatibility Complex (MHC) genes and their paralogues in zebrafish. BMC Genom. 2005;6:152. doi: 10.1186/1471-2164-6-152. PubMed DOI PMC
O’Hare T.H., Delany M.E. Genetic variation exists for telomeric array organization within and among the genomes of normal, immortalized, and transformed chicken systems. Chromosome Res. 2009;17:947–964. doi: 10.1007/s10577-009-9082-6. PubMed DOI PMC
Seroussi E., Pitel F., Leroux S., Morisson M., Bornelov S., Miyara S., Yosefi S., Cogburn L.A., Burt D.W., Andersson L., et al. Mapping of leptin and its syntenic genes to chicken chromosome 1p. BMC Genet. 2017;18:77. PubMed PMC
Wajant H., Siegmund D. TNFR1 and TNFR2 in the control of the life and death balance of macrophages. Front. Cell Dev. Biol. 2019;7:91. doi: 10.3389/fcell.2019.00091. PubMed DOI PMC
Wajant H., Pfizenmaier K., Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65. doi: 10.1038/sj.cdd.4401189. PubMed DOI
Cammisotto P., Bendayan M. A review on gastric leptin: The exocrine secretion of a gastric hormone. Anat. Cell Biol. 2012;45:1–16. doi: 10.5115/acb.2012.45.1.1. PubMed DOI PMC
Inagaki-Ohara K. Gastric leptin and tumorigenesis: Beyond obesity. Int. J. Mol. Sci. 2019;20:2622. doi: 10.3390/ijms20112622. PubMed DOI PMC
Darcel N.P., Liou A.P., Tome D., Raybould H.E. Activation of vagal afferents in the rat duodenum by protein digests requires PepT1. J. Nutr. 2005;135:1491–1495. doi: 10.1093/jn/135.6.1491. PubMed DOI
Pitel F., Abasht B., Morisson M., Crooijmans R.P., Vignoles F., Leroux S., Feve K., Bardes S., Milan D., Lagarrigue S., et al. A high-resolution radiation hybrid map of chicken chromosome 5 and comparison with human chromosomes. BMC Genom. 2004;5:66. doi: 10.1186/1471-2164-5-66. PubMed DOI PMC
de Givry S., Bouchez M., Chabrier P., Milan D., Schiex T. CARHTA GENE: Multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics. 2005;21:1703–1704. doi: 10.1093/bioinformatics/bti222. PubMed DOI
Voorrips R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002;93:77–78. doi: 10.1093/jhered/93.1.77. PubMed DOI
Plachy J. The chicken—A laboratory animal of the class Aves. Folia Biol.-Prague. 2000;46:17–23. PubMed
Federspiel M.J., Hughes S.H. Retroviral gene delivery. Method Cell Biol. 1997;52:179. PubMed
Courtet M., Flajnik M., Du Pasquier L. Major histocompatibility complex and immunoglobulin loci visualized by in situ hybridization on Xenopus chromosomes. Dev. Comp. Immunol. 2001;25:149–157. doi: 10.1016/S0145-305X(00)00045-8. PubMed DOI
Himly M., Foster D.N., Bottoli I., Iacovoni J.S., Vogt P.K. The DF-1 chicken fibroblast cell line: Transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology. 1998;248:295–304. doi: 10.1006/viro.1998.9290. PubMed DOI
Krylov V., Tlapakova T., Macha J. Localization of the single copy gene Mdh2 on Xenopus tropicalis chromosomes by FISH-TSA. Cytogenet. Genome Res. 2007;116:110–112. doi: 10.1159/000097427. PubMed DOI
Knytl M., Tlapakova T., Vankova T., Krylov V. Silurana Chromosomal Evolution: A new piece to the puzzle. Cytogenet. Genome Res. 2018;156:223–228. doi: 10.1159/000494708. PubMed DOI
Knytl M., Smolik O., Kubickova S., Tlapakova T., Evans B.J., Krylov V. Chromosome divergence during evolution of the tetraploid clawed frogs, Xenopus mellotropicalis and Xenopus epitropicalis as revealed by Zoo-FISH. PLoS ONE. 2017;12:e0177087. doi: 10.1371/journal.pone.0177087. PubMed DOI PMC
Carabajal Paladino L.Z., Nguyen P., Sichova J., Marec F. Mapping of single-copy genes by TSA-FISH in the codling moth, Cydia pomonella. BMC Genet. 2014;15(Suppl. 2):S15. doi: 10.1186/1471-2156-15-S2-S15. PubMed DOI PMC