Cytogenetic Analysis of the Fish Genus Carassius Indicates Divergence, Fission, and Segmental Duplication as Drivers of Tandem Repeat and Microchromosome Evolution
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
# CZ.02.01.01/00/22_010/0002902
P JAC project
MSCA Fellowships CZ-UK
# 54123
Grant Agency of Charles University
# MZE-RO0523
Ministry of Agriculture of the Czech Republic
PubMed
38340334
PubMed Central
PMC11079324
DOI
10.1093/gbe/evae028
PII: 7606233
Knihovny.cz E-zdroje
- Klíčová slova
- FISH, U1 and U2 snDNAs, chromosome painting, histone H3, polyploidy, teleost fish,
- MeSH
- Cyprinidae * MeSH
- cytogenetické vyšetření MeSH
- polyploidie MeSH
- segmentové duplikace * MeSH
- tandemové repetitivní sekvence MeSH
- tetraploidie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Fishes of the genus Carassius are useful experimental vertebrate models for the study of evolutionary biology and cytogenetics. Carassius demonstrates diverse biological characteristics, such as variation in ploidy levels and chromosome numbers, and presence of microchromosomes. Those Carassius polyploids with ≥150 chromosomes have microchromosomes, but the origin of microchromosomes, especially in European populations, is unknown. We used cytogenetics to study evolution of tandem repeats (U1 and U2 small nuclear DNAs and H3 histone) and microchromosomes in Carassius from the Czech Republic. We tested the hypotheses whether the number of tandem repeats was affected by polyploidization or divergence between species and what mechanism drives evolution of microchromosomes. Tandem repeats were found in tetraploid and hexaploid Carassius gibelio, and tetraploid Carassius auratus and Carassius carassius in conserved numbers, with the exception of U1 small nuclear DNA in C. auratus. This conservation indicates reduction and/or loss in the number of copies per locus in hexaploids and may have occurred by divergence rather than polyploidization. To study the evolution of microchromosomes, we used the whole microchromosome painting probe from hexaploid C. gibelio and hybridized it to tetraploid and hexaploid C. gibelio, and tetraploid C. auratus and C. carassius. Our results revealed variation in the number of microchromosomes in hexaploids and indicated that the evolution of the Carassius karyotype is governed by macrochromosome fissions followed by segmental duplication in pericentromeric areas. These are potential mechanisms responsible for the presence of microchromosomes in Carassius hexaploids. Differential efficacy of one or both of these mechanisms in different tetraploids could ensure variability in chromosome number in polyploids in general.
Department of Biology Federal University of Piauí Floriano Piauí Brazil
Department of Biology McMaster University Hamilton Ontario L8S4K1 Canada
Department of Cell Biology Faculty of Science Charles University Prague 12843 Czech Republic
Zobrazit více v PubMed
Ağdamar S, Baysal Ö, Yıldız A, Tarkan AS. Genetic differentiation of non-native populations of Gibel Carp, Carassius gibelio in Western Turkey by ISSR and SRAP markers. Zool Middle East. 2020:66(4):302–310. 10.1080/09397140.2020.1835215. DOI
Bertollo LAC, Cioffi MdB. Direct chromosome preparation from freshwater teleost fishes. In: Ozouf-Costaz C, Pisano E, Foresti F, Foresti LdAT, editors. Fish cytogenet. Tech. Ray-Fin fishes chondrichthyans. Enfield: CRC Press; 2015. p. 21–26.
Bi K, Bogart JP. Identification of intergenomic recombinations in unisexual salamanders of the genus Ambystoma by genomic in situ hybridization (GISH). Cytogenet Genome Res. 2006:112(3–4):307–312. 10.1159/000089885. PubMed DOI
Bishani A, et al. Evolution of tandemly arranged repetitive DNAs in three species of Cyprinoidei with different ploidy levels. Cytogenet Genome Res. 2021:161(1–2):32–42. 10.1159/000513274. PubMed DOI
Blanc G, Barakat A, Guyot R, Cooke R, Delseny M. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell. 2000:12(7):1093–1101. 10.1105/tpc.12.7.1093. PubMed DOI PMC
Braasch I, Gehrke AR, Smith JJ, Kawasaki K, Manousaki T, Pasquier J, Amores A, Desvignes T, Batzel P, Catchen J, et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet. 2016:48(4):427–437. 10.1038/ng.3526. PubMed DOI PMC
Bueno D, Palacios-Gimenez OM, Cabral-de-Mello DC. Chromosomal mapping of repetitive DNAs in the grasshopper Abracris flavolineata reveal possible ancestry of the B chromosome and H3 histone spreading. PLoS One. 2013:8(6):e66532. 10.1371/journal.pone.0066532. PubMed DOI PMC
Cabral-De-Mello DC, Valente GT, Nakajima RT, Martins C. Genomic organization and comparative chromosome mapping of the U1 snRNA gene in cichlid fish, with an emphasis in Oreochromis niloticus. Chromosome Res. 2012:20(2):279–292. 10.1007/s10577-011-9271-y. PubMed DOI
Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004:4(1):10. 10.1186/1471-2229-4-10. PubMed DOI PMC
Carvalho PC, et al. First chromosomal analysis in Hepsetidae (Actinopterygii, Characiformes): insights into relationship between African and Neotropical fish groups. Front Genet. 2017:8(203):1–12. 10.3389/fgene.2017.00203. PubMed DOI PMC
Cherfas NB. Natural triploidy in females of the unisexual form of silver crucian carp (Carassius auratus gibelio Bloch). Genetika. 1966:5:16–24.
Chobot K, Němec M. Červený seznam ohrožených druhů České republiky. Obratlovci: red list of threatened species of the Czech Republic. Příroda. 2017:34:1–182.
Colgan DJ, et al. Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Aust J Zool. 1998:46(5):419. 10.1071/ZO98048. DOI
de Souza MS, et al. Highly conserved microchromosomal organization in passeriformes birds revealed via BAC-FISH analysis. Birds. 2023:4(2):236–244. 10.3390/birds4020020. DOI
Ding M, et al. Genomic anatomy of male-specific microchromosomes in a gynogenetic fish. PLoS Genet. 2021:17(9):1–25. 10.1371/journal.pgen.1009760. PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004:32(5):1792–1797. 10.1093/nar/gkh340. PubMed DOI PMC
Fedorčák J, Križek P, Koščo J. Which factors influence spatio-temporal changes in the distribution of invasive and native species of genus Carassius? Aquat Invasions. 2023:18(2):219–230. 10.3391/ai.2023.18.2.105240. DOI
Fornaini NR, et al. Consequences of polyploidy and divergence as revealed by cytogenetic mapping of tandem repeats in African clawed frogs (Xenopus, Pipidae). Eur J Wildl Res. 2023:69(4):81. 10.1007/s10344-023-01709-8. PubMed DOI PMC
Fuad MMH, Vetenk L, Šimková A. Is gynogenetic reproduction in gibel carp (Carassius gibelio) a major trait responsible for invasiveness? J Vertebr Biol. 2021:70(4):21049. 10.25225/jvb.21049. DOI
Gvoždík V, Knytl M, Zassi-Boulou AG, Fornaini NR, Bergelová B. Tetraploidy in the Boettger’s dwarf clawed frog (Pipidae: Hymenochirus boettgeri) from the Congo indicates non-conspecificity with the captive population. Zool J Linn Soc. 2023:1–14. 10.1093/zoolinnean/zlad119 DOI
Hakoyama H, Nishimura T, Matsubara N, Iguchi K. Difference in parasite load and nonspecific immune reaction between sexual and gynogenetic forms of Carassius auratus. Biol J Linn Soc. 2001:72(3):401–407. 10.1006/bijl.2000.0507. DOI
Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985:22(2):160–174. 10.1007/BF02101694. PubMed DOI
Huang S, Spector DL. U1 and U2 small nuclear RNAs are present in nuclear speckles. Proc Natl Acad Sci USA. 1992:89(1):305–308. 10.1073/pnas.89.1.305. PubMed DOI PMC
International Chicken Genome Sequencing Consortium . Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004:432(7018):695–716. 10.1038/nature03154. PubMed DOI
Jan G, et al. Karyotypic analysis of crucian carp, Carassius Carassius (Linnaeus, 1758) from cold waters of Kashmir Himalayas. Caryologia. 2023:76(2):23–30. 10.36253/caryologia-2112. DOI
Kalous L, Bohlen J, Rylková K, Petrtýl M. Hidden diversity within the Prussian carp and designation of a neotype for Carassius gibelio (Teleostei: Cyprinidae). Ichthyol Explor Freshwaters. 2012:23(1):11–18.
Kalous L, Knytl M. Karyotype diversity of the offspring resulting from reproduction experiment between diploid male and triploid female of silver Prussian carp, Carassius gibelio (Cyprinidae, Actinopterygii). Folia Zool. 2011:60(2):115–121. 10.25225/fozo.v60.i2.a5.2011. DOI
Kalous L, Knytl M, Krajáková L. Usage of non-destructive method of chromosome preparation applied on silver Prussian carp (Carassius gibelio). In: Kubík Š, Barták M, editors. Work. Anim. biodiversity. Jevany: Czech University of Life Sciences in Prague; 2010. p. 57–60.
Kalous L, Šlechtová V, Bohlen J, Petrtýl M, Švátora M. First European record of Carassius langsdorfii from the Elbe basin. J Fish Biol. 2007:70(sa):132–138. 10.1111/j.1095-8649.2006.01290.x. DOI
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017:14(6):587–589. 10.1038/nmeth.4285. PubMed DOI PMC
Khosravi M, Abdoli A, Tajbakhsh F, Ahmadzadeh F, Nemati H. et al. An effort toward species delimitation in the genus Carassius (Cyprinidae) using morphology and the related challenges: a case study from Inland waters of Iran. J Ichthyol. 2022:62(2):185–194. 10.1134/S0032945222020096. DOI
Knytl M, Fornaini N. Measurement of chromosomal arms and fish reveal complex genome architecture and standardized karyotype of model fish, genus Carassius. Cells. 2021:10(9):2343. 10.3390/cells10092343. PubMed DOI PMC
Knytl M, et al. Divergent subgenome evolution in the allotetraploid frog Xenopus calcaratus. Gene. 2023:851:146974. 10.1016/j.gene.2022.146974. PubMed DOI
Knytl M, Forsythe A, Kalous L. A fish of multiple faces, which show us enigmatic and incredible phenomena in nature: biology and cytogenetics of the genus Carassius. Int J Mol Sci. 2022:23(15):8095. 10.3390/ijms23158095. PubMed DOI PMC
Knytl M, Kalous L, Rab P. Karyotype and chromosome banding of endangered Crucian carp, Carassius Carassius (Linnaeus, 1758) (Teleostei, Cyprinidae). Comp Cytogenet. 2013a:7(3):205–213. 10.3897/compcytogen.v7i3.5411. PubMed DOI PMC
Knytl M, et al. Morphologically indistinguishable hybrid Carassius female with 156 chromosomes: a threat for the threatened Crucian carp, C. carassius, L. PLoS One. 2018:13(1):e0190924. 10.1371/journal.pone.0190924. PubMed DOI PMC
Knytl M, Kalous L, Symonová R, Rylková K, Ráb P. Chromosome studies of European cyprinid fishes: cross-species painting reveals natural allotetraploid origin of a Carassius female with 206 chromosomes. Cytogenet Genome Res. 2013b:139(4):276–283. 10.1159/000350689. PubMed DOI
Knytl M, et al. Chromosome divergence during evolution of the tetraploid clawed frogs, Xenopus mellotropicalis and Xenopus epitropicalis as revealed by Zoo-FISH. PLoS One. 2017:12(5):e0177087. 10.1371/journal.pone.0177087. PubMed DOI PMC
Kretschmer R, et al. Novel insights into chromosome evolution of charadriiformes: extensive genomic reshuffling in the wattled jacana (Jacana jacana, Charadriiformes, Jacanidae). Genet Mol Biol. 2020:43(1):1–8. 10.1590/1678-4685-GMB-2019-0236. PubMed DOI PMC
Krylov V, et al. Preparation of Xenopus tropicalis whole chromosome painting probes using laser microdissection and reconstruction of X. laevis tetraploid karyotype by Zoo-FISH. Chromosome Res. 2010:18(4):431–439. 10.1007/s10577-010-9127-x. PubMed DOI
Kubickova S, Cernohorska H, Musilova P, Rubes J. The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosome Res. 2002:10(7):571–577. 10.1023/A:1020914702767. PubMed DOI
Kuhl H, et al. Equilibrated evolution of the mixed auto-/allopolyploid haplotype-resolved genome of the invasive hexaploid Prussian carp. Nat Commun. 2022:13(1):1–11. 10.1038/s41467-022-31515-w. PubMed DOI PMC
Lamatsch D, Stöck M. Sperm-dependent parthenogenesis and hybridogenesis in teleost fishes. In: Schöne I, Martens K, van Dijk P, editors. Lost sex evol. biol. parthenogenes. Dordrecht: Springer; 2009. p. 399–432.
Leister D. Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet. 2004:20(3):116–122. 10.1016/j.tig.2004.01.007. PubMed DOI
Li XY, et al. Origin and transition of sex determination mechanisms in a gynogenetic hexaploid fish. Heredity (Edinb). 2018:121(1):64–74. 10.1038/s41437-017-0049-7. PubMed DOI PMC
Li JT, et al. Parallel subgenome structure and divergent expression evolution of allo-tetraploid common carp and goldfish. Nat Genet. 2021:53(10):1493–1503. 10.1038/s41588-021-00933-9. PubMed DOI PMC
Li XY, et al. Extra microchromosomes play male determination role in polyploid gibel carp. Genetics. 2016:203(3):1415–1424. 10.1534/genetics.115.185843. PubMed DOI PMC
Lu M, Zhou L, Gui J. Evolutionary mechanisms and practical significance of reproductive success and clonal diversity in unisexual vertebrate polyploids. Sci China Life Sci. 2023. 10.1007/s11427-023-2486-2. PubMed DOI
Lusk S, Lusková V, Hanel L. Alien fish species in the Czech Republic and their impact on the native fish fauna. Folia Zool. 2010:59(1):57–72. 10.25225/fozo.v59.i1.a9.2010. DOI
Malimpensa GDC, et al. Chromosomal diversification in two species of Pimelodus (Siluriformes: Pimelodidae): comparative cytogenetic mapping of multigene families. Zebrafish. 2020:17(4):278–286. 10.1089/zeb.2020.1892. PubMed DOI
Minh BQ, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020:37(5):1530–1534. 10.1093/molbev/msaa015. PubMed DOI PMC
Nanda I, Schmid M. Localization of the telomeric (TTAGGG)n sequence in chicken (Gallus domesticus) chromosomes. Cytogenet Cell Genet. 1994:65(3):190–193. 10.1159/000133630. PubMed DOI
Ohno S, Muramoto J, Christian L, Atkin NB. Diploid–tetraploid relationship among old-world members of the fish family Cyprinidae. Chromosoma. 1967:23(1):1–9. 10.1007/BF00293307. DOI
Pang M, et al. Quantitative trait loci mapping for feed conversion efficiency in crucian carp (Carassius auratus). Sci Rep. 2017:7(1):1–11. 10.1038/s41598-017-17269-2. PubMed DOI PMC
Papoušek I, et al. Identification of natural hybrids of gibel carp Carassius auratus gibelio (Bloch) and crucian carp Carassius carassius (L.) from lower Dyje river floodplain (Czech Republic). J Fish Biol. 2008:72(5):1230–1235. 10.1111/j.1095-8649.2007.01783.x. DOI
Pavlov DA. Features of inner ear morphology of gibel carp Carassius gibelio (Cyprinidae). J Ichthyol. 2022a:62(2):195–204. 10.1134/S0032945222020138. DOI
Pavlov DA. Life history of two Carassius (Cyprinidae) species in the conditions of sympatry. J Ichthyol. 2022b:62(6):1100–1115. 10.1134/S0032945222060212. DOI
Przybył A, et al. Sex, size and ploidy ratios of Carassius gibelio from Poland. Aquat Invasions. 2020:15(1):1–20. 10.3391/ai.2020.15.2.08. DOI
Rylková K, Kalous L, Bohlen J, Lamatsch DK, Petrtl M. Phylogeny and biogeographic history of the cyprinid fish genus Carassius (Teleostei: Cyprinidae) with focus on natural and anthropogenic arrivals in Europe. Aquaculture. 2013:380–383:13–20. 10.1016/j.aquaculture.2012.11.027. DOI
Sacerdot C, Louis A, Bon C, Berthelot C, Roest Crollius H. Chromosome evolution at the origin of the ancestral vertebrate genome. Genome Biol. 2018:19(1):166. 10.1186/s13059-018-1559-1. PubMed DOI PMC
Sember A, et al. Taxonomic diversity not associated with gross karyotype differentiation: the case of bighead carps, genus hypophthalmichthys (Teleostei, Cypriniformes, Xenocyprididae). Genes (Basel). 2020:11(5):479. 10.3390/genes11050479. PubMed DOI PMC
Seroussi E, et al. Avian expression patterns and genomic mapping implicate leptin in digestion and TNF immunity, suggesting that their interacting adipokine role has been acquired only in mammals. Int J Mol Sci. 2019:20(18):4489. 10.3390/ijms20184489. PubMed DOI PMC
Silva DM, Utsunomia R, Pansonato-Alves JC, Oliveira C, Foresti F. Chromosomal mapping of repetitive DNA sequences in five species of astyanax (Characiformes, Characidae) reveals independent location of U1 and U2 snRNA sites and association of U1 snRNA and 5S rDNA. Cytogenet Genome Res. 2015:146(2):144–152. 10.1159/000438813. PubMed DOI
Spoz A, et al. Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes. Comp Cytogenet. 2014:8(3):233–248. 10.3897/compcytogen.v8i3.7718. PubMed DOI PMC
Srikulnath K, Ahmad SF, Singchat W, Panthum T. Why do some vertebrates have microchromosomes? Cells. 2021:10(9):1–33. 10.3390/cells10092182. PubMed DOI PMC
Symonová R, Howell WM. Vertebrate genome evolution in the light of fish cytogenomics and rDNAomics. Genes (Basel). 2018:9(2):1–27. 10.3390/genes9020096. PubMed DOI PMC
Symonová R, et al. Genome compositional organization in gars shows more similarities to mammals than to other ray-finned fish. J Exp Zool Part B Mol Dev Evol. 2017:328(7):607–619. 10.1002/jez.b.22719. PubMed DOI
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021:38(7):3022–3027. 10.1093/molbev/msab120. PubMed DOI PMC
Tapkir S, et al. Invasive gibel carp (Carassius gibelio) outperforms threatened native crucian carp (Carassius carassius) in growth rate and effectiveness of resource use: field and experimental evidence. Aquat Conserv Mar Freshw Ecosyst. 2022:32(12):1901–1912. 10.1002/aqc.3894. DOI
Tapkir S, et al. Invasive gibel carp use vacant space and occupy lower trophic niche compared to endangered native crucian carp. Biol Invasions. 2023:25(9):2917–2928. 10.1007/s10530-023-03081-9. DOI
Völker M, Kullmann H. Sequential chromosome banding from single acetic acid fixed embryos of Chromaphyosemion killifishes (Cyprinodontiformes, Nothobranchiidae). Cybium. 2006:30(2):171–176.
Völker M, Sonnenberg R, Ráb P, Kullmann H. Karyotype differentiation in Chromaphyosemion killifishes (Cyprinodontiformes, Nothobranchiidae) II: cytogenetic and mitochondrial DNA analyses demonstrate karyotype differentiation and its evolutionary direction in C. riggenbachi. Cytogenet Genome Res. 2006:115(1):70–83. 10.1159/000094803. PubMed DOI
Wang J, et al. A novel allotriploid hybrid derived from female goldfish × male Bleeker’s yellow tail. Front Genet. 2022a:13(880591):1–12. 10.3389/fgene.2022.880591. PubMed DOI PMC
Wang Y, et al. Comparative genome anatomy reveals evolutionary insights into a unique amphitriploid fish. Nat Ecol Evol. 2022b:6(9):1354–1366. 10.1038/s41559-022-01813-z. PubMed DOI PMC
Waters PD, et al. Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc Natl Acad Sci USA. 2021:118(45):1–11. 10.1073/pnas.2112494118. PubMed DOI PMC
Wen M, et al. Sex chromosome and sex locus characterization in goldfish, Carassius auratus (Linnaeus, 1758). BMC Genomics. 2020:21(1):1–12. 10.1186/s12864-020-06959-3. PubMed DOI PMC
Winfield IJ, Nelson JS. 2012. Cyprinid fishes: systematics, biology and exploitation. Dordrecht: Springer Science & Business Media. 10.1007/978-94-011-3092-9. DOI
Xiao J, et al. Coexistence of diploid, triploid and tetraploid crucian carp (Carassius auratus) in natural waters. BMC Genet. 2011:12(1):20. 10.1186/1471-2156-12-20. PubMed DOI PMC
Yang L, et al. Molecular phylogeny of the fishes traditionally referred to Cyprinini sensu stricto (Teleostei: Cypriniformes). Zool Scr. 2010:39(6):527–550. 10.1111/j.1463-6409.2010.00443.x. DOI
Yi MS, et al. Molecular cytogenetic detection of paternal chromosome fragments in allogynogenetic gibel carp, Carassius auratus gibelio Bloch. Chromosome Res. 2003:11(7):665–71. 10.1023/a:1025985625706. PubMed DOI
Zhao X, et al. Genotypic males play an important role in the creation of genetic diversity in gynogenetic gibel carp. Front Genet. 2021:12(691923):1–9. 10.3389/fgene.2021.691923. PubMed DOI PMC
Zhou L, Gui JF. Karyotypic diversity in polyploid gibel carp, Carassius auratus gibelio Bloch. Genetica. 2002:115(2):223–232. 10.1023/A:1020102409270. PubMed DOI