Preparation of Xenopus tropicalis whole chromosome painting probes using laser microdissection and reconstruction of X. laevis tetraploid karyotype by Zoo-FISH

. 2010 Jun ; 18 (4) : 431-9.

Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20390340

Laser microdissection was used for the preparation of whole chromosome painting probes in Silurana (Xenopus) tropicalis. Subsequent cross-species fluorescence in situ hybridization (Zoo-FISH) on its tetraploid relative Xenopus laevis revealed persistence of chromosomal quartets even after 50-65 million years of separate evolution. Their arrangement is in a partial concordance with previous experiments based on similarity of a high-resolution replication banding pattern. Further support for an allotetraploid origin of X. laevis was given by hybridization with a probe derived from the smallest X. tropicalis chromosome (Xt10). Here, pericentric areas of both arms of Xl 14 and 18 were stained, indicating intrachromosomal rearrangements. The positions of signals were not in agreement with the chromosomal quartets revealed by painting probes Xt 8 and 9 (Xl 11 + 14 and Xl 15 + 18, respectively). This suggests that both X. tropicalis chromosomes underwent non-reciprocal translocation of Xt10 separately in at least two different ancient ancestors. In addition, the observed translocation events could explain the origin of individuals with 18 chromosomes in diploid karyotypes, probably extinct after the genesis of the allotetraploid X. laevis (2n = 36).

Zobrazit více v PubMed

Chromosome Res. 2008;16(6):863-73 PubMed

Dev Comp Immunol. 2001 Mar;25(2):149-57 PubMed

BMC Genomics. 2006 Aug 29;7:219 PubMed

Methods Cell Sci. 2001;23(1-3):37-55 PubMed

Chromosome Res. 1998 Sep;6(6):463-71 PubMed

Chromosome Res. 2009;17(1):11-8 PubMed

Cytogenetics. 1972;11(4):270-8 PubMed

Front Biosci. 2008 May 01;13:4687-706 PubMed

Chromosoma. 2007 Apr;116(2):135-45 PubMed

Genetics. 1997 Sep;147(1):255-70 PubMed

Mol Phylogenet Evol. 2004 Oct;33(1):197-213 PubMed

Cytogenet Genome Res. 2003;103(1-2):169-72 PubMed

Genetica. 2008 Jul;133(3):261-7 PubMed

Chromosoma. 1991 Nov;101(2):123-32 PubMed

EXS. 2001;(91):143-76 PubMed

Chromosome Res. 2004;12(2):143-51 PubMed

Cytogenet Cell Genet. 1973;12(5):297-304 PubMed

Chromosome Res. 1999;7(4):289-95 PubMed

Chromosome Res. 2007;15(7):917-30 PubMed

Dev Dyn. 2002 Dec;225(4):384-91 PubMed

Cytogenet Genome Res. 2003;103(1-2):173-84 PubMed

Dev Dyn. 2009 Jun;238(6):1398-46 PubMed

Chromosoma. 1985;91(3-4):172-84 PubMed

Chromosome Res. 2002;10(7):571-7 PubMed

Cytogenet Genome Res. 2007;116(1-2):110-2 PubMed

Genome Dyn. 2006;2:138-153 PubMed

BMC Genomics. 2008 Apr 14;9:168 PubMed

Genomics. 2000 Feb 15;64(1):102-5 PubMed

BMC Biol. 2007 Jul 25;5:31 PubMed

Cytogenet Cell Genet. 1982;34(1-2):149-57 PubMed

Chromosome Res. 2005;13(7):699-706 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...