Preparation of Xenopus tropicalis whole chromosome painting probes using laser microdissection and reconstruction of X. laevis tetraploid karyotype by Zoo-FISH
Language English Country Netherlands Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Biological Evolution * MeSH
- Chromosomes genetics MeSH
- Cytogenetic Analysis methods MeSH
- DNA Probes * MeSH
- In Situ Hybridization, Fluorescence MeSH
- Karyotyping MeSH
- Microdissection * MeSH
- Chromosome Banding MeSH
- Translocation, Genetic MeSH
- Xenopus laevis genetics MeSH
- Xenopus genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA Probes * MeSH
Laser microdissection was used for the preparation of whole chromosome painting probes in Silurana (Xenopus) tropicalis. Subsequent cross-species fluorescence in situ hybridization (Zoo-FISH) on its tetraploid relative Xenopus laevis revealed persistence of chromosomal quartets even after 50-65 million years of separate evolution. Their arrangement is in a partial concordance with previous experiments based on similarity of a high-resolution replication banding pattern. Further support for an allotetraploid origin of X. laevis was given by hybridization with a probe derived from the smallest X. tropicalis chromosome (Xt10). Here, pericentric areas of both arms of Xl 14 and 18 were stained, indicating intrachromosomal rearrangements. The positions of signals were not in agreement with the chromosomal quartets revealed by painting probes Xt 8 and 9 (Xl 11 + 14 and Xl 15 + 18, respectively). This suggests that both X. tropicalis chromosomes underwent non-reciprocal translocation of Xt10 separately in at least two different ancient ancestors. In addition, the observed translocation events could explain the origin of individuals with 18 chromosomes in diploid karyotypes, probably extinct after the genesis of the allotetraploid X. laevis (2n = 36).
See more in PubMed
Chromosome Res. 2008;16(6):863-73 PubMed
Dev Comp Immunol. 2001 Mar;25(2):149-57 PubMed
BMC Genomics. 2006 Aug 29;7:219 PubMed
Methods Cell Sci. 2001;23(1-3):37-55 PubMed
Chromosome Res. 1998 Sep;6(6):463-71 PubMed
Chromosome Res. 2009;17(1):11-8 PubMed
Cytogenetics. 1972;11(4):270-8 PubMed
Front Biosci. 2008 May 01;13:4687-706 PubMed
Chromosoma. 2007 Apr;116(2):135-45 PubMed
Genetics. 1997 Sep;147(1):255-70 PubMed
Mol Phylogenet Evol. 2004 Oct;33(1):197-213 PubMed
Cytogenet Genome Res. 2003;103(1-2):169-72 PubMed
Genetica. 2008 Jul;133(3):261-7 PubMed
Chromosoma. 1991 Nov;101(2):123-32 PubMed
EXS. 2001;(91):143-76 PubMed
Chromosome Res. 2004;12(2):143-51 PubMed
Cytogenet Cell Genet. 1973;12(5):297-304 PubMed
Chromosome Res. 1999;7(4):289-95 PubMed
Chromosome Res. 2007;15(7):917-30 PubMed
Dev Dyn. 2002 Dec;225(4):384-91 PubMed
Cytogenet Genome Res. 2003;103(1-2):173-84 PubMed
Dev Dyn. 2009 Jun;238(6):1398-46 PubMed
Chromosoma. 1985;91(3-4):172-84 PubMed
Chromosome Res. 2002;10(7):571-7 PubMed
Cytogenet Genome Res. 2007;116(1-2):110-2 PubMed
Genome Dyn. 2006;2:138-153 PubMed
BMC Genomics. 2008 Apr 14;9:168 PubMed
Genomics. 2000 Feb 15;64(1):102-5 PubMed
BMC Biol. 2007 Jul 25;5:31 PubMed
Cytogenet Cell Genet. 1982;34(1-2):149-57 PubMed
Chromosome Res. 2005;13(7):699-706 PubMed
Sex chromosome evolution in frogs-helpful insights from chromosome painting in the genus Engystomops
Efficient high-throughput sequencing of a laser microdissected chromosome arm