Localization, structure and polymorphism of two paralogous Xenopus laevis mitochondrial malate dehydrogenase genes
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
- MeSH
- chromozomy MeSH
- duplicitní geny MeSH
- exprimované sekvenční adresy MeSH
- genetická variace MeSH
- hybridizace in situ fluorescenční MeSH
- introny MeSH
- karyotypizace MeSH
- klonování DNA MeSH
- konzervovaná sekvence MeSH
- malátdehydrogenasa chemie genetika metabolismus MeSH
- mapování chromozomů MeSH
- mitochondrie enzymologie MeSH
- molekulární sekvence - údaje MeSH
- polymorfismus genetický * MeSH
- retroelementy MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie aminokyselin MeSH
- techniky amplifikace nukleových kyselin MeSH
- Xenopus laevis genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- malátdehydrogenasa MeSH
- retroelementy MeSH
Two paralogous mitochondrial malate dehydrogenase 2 (Mdh2) genes of Xenopus laevis have been cloned and sequenced, revealing 95% identity. Fluorescence in-situ hybridization (FISH) combined with tyramide amplification discriminates both genes; Mdh2a was localized into chromosome q3 and Mdh2b into chromosome q8. One kb cDNA probes detect both genes with 85% accuracy. The remaining signals were on the paralogous counterpart. Introns interrupt coding sequences at the same nucleotide as defined for mouse. Restriction polymorphism has been detected in the first intron of Mdh2a, while the individual variability in intron 6 of Mdh2b gene is represented by an insertion of incomplete retrotransposon L1Xl. Rates of nucleotide substitutions indicate that both genes are under similar evolutionary constraints. X. laevis Mdh2 genes can be used as markers for physical mapping and linkage analysis.
Zobrazit více v PubMed
Genetics. 1999 Apr;151(4):1531-45 PubMed
Immunogenetics. 2003 Nov;55(8):561-9 PubMed
Chromosoma. 1995 Dec;104(4):242-51 PubMed
Chromosoma. 1991 Nov;101(2):123-32 PubMed
Mol Phylogenet Evol. 2004 Oct;33(1):197-213 PubMed
Chromosoma. 2000 Jun;109 (3):173-80 PubMed
Methods Cell Biol. 1991;36:19-34 PubMed
Cytogenet Cell Genet. 2001;92(1-2):108-10 PubMed
Chromosoma. 1973;44(3):335-42 PubMed
Mol Biol Evol. 1993 Nov;10(6):1360-9 PubMed
Chromosome Res. 2004;12(7):671-81 PubMed
Chromosoma. 1993 Feb;102(3):163-73 PubMed
J Mol Biol. 2000 Jul 21;300(4):1005-16 PubMed
Genome. 2002 Feb;45(1):63-70 PubMed
Science. 1977 Feb 25;195(4280):785-7 PubMed
Cytogenet Genome Res. 2003;103(1-2):169-72 PubMed
Chromosoma. 1992 Mar;101(5-6):301-10 PubMed
Cytogenet Cell Genet. 1998;82(3-4):257-62 PubMed
Dev Comp Immunol. 2001 Mar;25(2):149-57 PubMed
Chromosoma. 1974;47(3):283-96 PubMed
Protein Sci. 1994 Oct;3(10):1883-8 PubMed
Chromosoma. 1997 Jun;106(1):44-52 PubMed
Folia Biol (Praha). 2003;49(3):115-7 PubMed
Cytogenetics. 1972;11(4):270-8 PubMed
Cytogenet Genome Res. 2003;101(1):80-3 PubMed
Bioinformatics. 2001 Dec;17(12):1244-5 PubMed
Chromosome Res. 2000;8(1):27-35 PubMed
Genome Res. 2000 Jul;10(7):939-49 PubMed
Mol Biol Evol. 1986 Sep;3(5):418-26 PubMed
J Mol Biol. 1988 Aug 5;202(3):355-64 PubMed
Genome Biol. 2002;3(6):RESEARCH0028 PubMed
Proc Natl Acad Sci U S A. 1990 Jul;87(13):5119-23 PubMed
Cytogenet Cell Genet. 2001;92(1-2):111-5 PubMed
J Mol Evol. 2004 Dec;59(6):738-46 PubMed
Nucleic Acids Res. 1987 Jun 25;15(12):4993 PubMed
Gene. 2002 Aug 7;295(2):299-309 PubMed