Chromosome divergence during evolution of the tetraploid clawed frogs, Xenopus mellotropicalis and Xenopus epitropicalis as revealed by Zoo-FISH

. 2017 ; 12 (5) : e0177087. [epub] 20170518

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28545147

Whole genome duplication (WGD) generates new species and genomic redundancy. In African clawed frogs of the genus Xenopus, this phenomenon has been especially important in that (i) all but one extant species are polyploid and (ii) whole genome sequences of some species provide an evidence for genomic rearrangements prior to or after WGD. Within Xenopus in the subgenus Silurana, at least one allotetraploidization event gave rise to three extant tetraploid (2n = 4x = 40) species-Xenopus mellotropicalis, X. epitropicalis, and X. calcaratus-but it is not yet clear the degree to which these tetraploid genomes experienced rearrangements prior to or after allotetraploidization. To explore genome evolution during diversification of these species, we performed cytogenetic analyses of X. mellotropicalis, including assessment of the localization of nucleolar organizer region, chromosome banding, and determination of the p/q arm ratios for each chromosome pair. We compared these data to a previously characterized karyotype of X. epitropicalis. Morphometric, C-banding and Zoo-FISH data support a previously hypothesized common allotetraploid predecessor of these species. Zoo-FISH with whole chromosome painting (WCP) probes derived from the closely related diploid species X. tropicalis confirmed the existence of ten chromosomal quartets in X. mellotropicalis somatic cells, as expected by its ploidy level and tetraploid ancestry. The p/q arm ratio of chromosome 2a was found to be substantially different between X. mellotropicalis (0.81) and X. epitropicalis (0.67), but no substantial difference between these two species was detected in this ratio for the homoeologous chromosome pair 2b, or for other chromosome pairs. Additionally, we identified variation between these two species in the locations of a heterochromatic block on chromosome pair 2a. These results are consistent with a dynamic history of genomic rearrangements before and/or after genome duplication, a surprising finding given the otherwise relatively conserved genomic structure of most frogs.

Zobrazit více v PubMed

Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, et al. Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci U S A. 2004;101: 18240–5. 10.1073/pnas.0407258102 PubMed DOI PMC

Chen ZJ, Ni Z. Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays. 2006;28: 240–252. 10.1002/bies.20374 PubMed DOI PMC

Song C, Liu S, Xiao J, He W, Zhou Y, Qin Q, et al. Polyploid organisms. Sci China Life Sci. 2012;55: 301–311. 10.1007/s11427-012-4310-2 PubMed DOI

De Storme N, Mason A. Plant speciation through chromosome instability and ploidy change: Cellular mechanisms, molecular factors and evolutionary relevance. Curr Plant Biol. Elsevier B.V.; 2014;1: 10–33. 10.1016/j.cpb.2014.09.002 DOI

Chenuil A, Galtier N, Berrebi P. A test of the hypothesis of an autopolyploid vs. allopolyploid origin for a tetraploid lineage: application to the genus Barbus (Cyprinidae). Heredity (Edinb). 1999;82: 373–380. 10.1038/sj.hdy.6884890 PubMed DOI

Blanc G, Wolfe KH. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell. 2004;16: 1679–91. 10.1105/tpc.021410 PubMed DOI PMC

Liu SJ. Distant hybridization leads to different ploidy fishes. Sci China Life Sci. 2010;53: 416–25. 10.1007/s11427-010-0057-9 PubMed DOI

Morishima K, Yoshikawa H, Arai K. Diploid clone produces unreduced diploid gametes but tetraploid clone generates reduced diploid gametes in the Misgurnus loach. Biol Reprod. 2012;86: 33 10.1095/biolreprod.111.093302 PubMed DOI

Wagler J. Untitled footnote. Isis von Oken. 1827;20: 726.

Gray JE. Notice of a new genus (Silurana) of frogs from West Africa. Ann Mag Nat Hist Ser 3. 1864;14: 315–316.

Tymowska J. Karyotype analysis of Xenopus tropicalis Gray, Pipidae. Cytogenet Cell Genet. 1973;12: 297–304. 10.1159/000130468 PubMed DOI

Tymowska J, Fischberg M, Tinsley RC. The karyotype of the tetraploid species Xenopus vestitus Laurent (Anura: pipidae). Cytogenet Cell Genet. 1977;19: 344–54. 10.1159/000130828 PubMed DOI

Tymowska J, Fischberg M. Chromosome complements of the genus Xenopus. Chromosoma. 1973;44: 335–42. 10.1007/BF00291027 PubMed DOI

Tymowska J, Fischberg M. The karyotype of the hexaploid species Xenopus ruwenzoriensis Fischberg and Kobel (Anura: Pipidae). Cytogenet Cell Genet. 1980;27: 39–44. 10.1159/000131462 PubMed DOI

Tymowska J, Kobel HR. Karyotype analysis of Xenopus muelleri (Peters) and Xenopus laevis (Daudin), Pipidae. Cytogenetics. 1972;11: 270–8. 10.1159/000130197 PubMed DOI

Tymowska J. Polyploidy and cytogenetic variation in frogs of the genus Xenopus In: Green DM, Sessions SK, editors. Amphibian cytogenetics and evolution. San Diego: Academic Press; 1991. pp. 259–297.

Evans BJ, Carter TF, Greenbaum E, Gvoždík V, Kelley DB, McLaughlin PJ, et al. Genetics, morphology, advertisement calls, and historical records distinguish six new polyploid species of African clawed frog (Xenopus, Pipidae) from West and Central Africa. PLoS One. 2015;10: e0142823 10.1371/journal.pone.0142823 PubMed DOI PMC

Fischberg M, Colombelli B, Picard JJ. Diagnose préliminaire d’une espèce nouvelle de Xenopus du Zaïre. Alytes. 1982;1: 53.

Bewick AJ, Chain FJJ, Heled J, Evans BJ. The Pipid Root. Syst Biol. 2012;61: 913–926. 10.1093/sysbio/sys039 PubMed DOI

Schmid M, Steinlein C. Chromosome banding in Amphibia. XVI. High-resolution replication banding patterns in Xenopus laevis. Chromosoma. 1991;101: 123–32. 10.1007/BF00357062 PubMed DOI

Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, Cannatella DC. A mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implications for polyploid evolution. Mol Phylogenet Evol. 2004;33: 197–213. 10.1016/j.ympev.2004.04.018 PubMed DOI

Schmid M, Steinlein C. Chromosome banding in Amphibia. XXXII. the genus Xenopus (Anura, Pipidae). Cytogenet Genome Res. 2015;145: 201–217. 10.1159/000433481 PubMed DOI

Tymowska J, Fischberg M. A comparison of the karyotype, constitutive heterochromatin, and nucleolar organizer regions of the new tetraploid species Xenopus epitropicalis Fischberg and Picard with those of Xenopus tropicalis Gray (Anura, Pipidae). Cytogenet Cell Genet. 1982;34: 149–57. 10.1159/000131803 PubMed DOI

Parker HW. Reptiles and amphibians collected by the Lake Rudoph Rift Valley Expedition. Ann Mag Nat Hist Ser 10. 1936;18: 594–609.

Jotterand M, Fischberg M. A chromosome mutation affecting the number of nucleoli in Xenopus borealis Parker. Experientia. 1974;30: 1003–1005. 10.1007/BF01938973 PubMed DOI

Krylov V, Kubickova S, Rubes J, Macha J, Tlapakova T, Seifertova E, et al. Preparation of Xenopus tropicalis whole chromosome painting probes using laser microdissection and reconstruction of X. laevis tetraploid karyotype by Zoo-FISH. Chromosom Res. 2010;18: 431–439. 10.1007/s10577-010-9127-x PubMed DOI

Uno Y, Nishida C, Takagi C, Ueno N, Matsuda Y. Homoeologous chromosomes of Xenopus laevis are highly conserved after whole-genome duplication. Heredity (Edinb). Nature Publishing Group; 2013;111: 430–436. 10.1038/hdy.2013.65 PubMed DOI PMC

Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature. Nature Publishing Group; 2016;538: 336–343. 10.1038/nature19840 PubMed DOI PMC

Daudin FM. An XI histoire naturelle des rainettes, des grenouilles et des crapauds. Paris: F. Dufart; 1802.

Evans BJ, Kelley DB, Melnick DJ, Cannatella DC. Evolution of RAG-1 in polyploid clawed frogs. Mol Biol Evol. 2005;22: 1193–1207. 10.1093/molbev/msi104 PubMed DOI

Evans BJ. Ancestry influences the fate of duplicated genes millions of years after polyploidization of clawed frogs (Xenopus). Genetics. 2007;176: 1119–1130. 10.1534/genetics.106.069690 PubMed DOI PMC

Sinzelle L, Thuret R, Hwang H-Y, Herszberg B, Paillard E, Bronchain OJ, et al. Characterization of a novel Xenopus tropicalis cell line as a model for in vitro studies. Genesis. 2012;50: 316–24. 10.1002/dvg.20822 PubMed DOI PMC

Rábová M, Völker M, Pelikánová Š, Ráb P. Sequential chromosome banding in fishes In: Ozouf-Costaz C, Pisano E, Foresti F, Foresti L de AT, editors. Fish cytogenetic techniques: Ray-Fin fishes and chondrichthyans. Enfield: CRC Press; 2015. pp. 92–102.

Martins C, Galetti PM. Chromosomal localization of 5S rDNA genes in Leporinus fish (anostomidae, characiformes). Chromosom Res. 1999;7: 363–367. 10.1023/A:1009216030316 PubMed DOI

Naito E, Dewa K, Ymanouchi H, Kominami R. Ribosomal ribonucleic acid (rRNA) gene typing for species identification. J Forensic Sci. ASTM International; 1992;37: 396–403. 10.1520/JFS13249J PubMed DOI

Khokha MK, Krylov V, Reilly MJ, Gall JG, Bhattacharya D, Cheung CYJ, et al. Rapid gynogenetic mapping of Xenopus tropicalis mutations to chromosomes. Dev Dyn. 2009;238: 1398–1406. 10.1002/dvdy.21965 PubMed DOI PMC

Kubickova S, Cernohorska H, Musilova P, Rubes J. The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosom Res. 2002;10: 571–577. 10.1023/A:1020914702767 PubMed DOI

Seifertova E, Zimmerman LB, Gilchrist MJ, Macha J, Kubickova S, Cernohorska H, et al. Efficient high-throughput sequencing of a laser microdissected chromosome arm. BMC Genomics. 2013;14: 357 10.1186/1471-2164-14-357 PubMed DOI PMC

Bi K, Bogart JP. Identification of intergenomic recombinations in unisexual salamanders of the genus Ambystoma by genomic in situ hybridization (GISH). Cytogenet Genome Res. 2006;112: 307–12. 10.1159/000089885 PubMed DOI

Kahn J. The nucleolar organizer in the mitotic chromosome complement of Xenopus Laevis. J Cell Sci. 1962;103: 407–409.

Peters WCH. Über einige neue Fische und Amphibien aus Angola und Mozambique. Monatsberichte der Akad der Wiss zu Berlin. 1844; 32–37.

Pardue ML. Localization of repeated DNA sequences in Xenopus chromosomes. Cold Spring Harb Symp Quant Biol. 1974;38: 475–482. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

FISH mapping in Xenopus pygmaeus refines understanding of genomic rearrangements and reveals jumping NORs in African clawed frogs

. 2025 Mar 01 ; () : . [epub] 20250301

Cytogenetic Analysis of the Fish Genus Carassius Indicates Divergence, Fission, and Segmental Duplication as Drivers of Tandem Repeat and Microchromosome Evolution

. 2024 Mar 02 ; 16 (3) : .

Consequences of polyploidy and divergence as revealed by cytogenetic mapping of tandem repeats in African clawed frogs (Xenopus, Pipidae)

. 2023 ; 69 (4) : 81. [epub] 20230721

A Fish of Multiple Faces, Which Show Us Enigmatic and Incredible Phenomena in Nature: Biology and Cytogenetics of the Genus Carassius

. 2022 Jul 22 ; 23 (15) : . [epub] 20220722

Measurement of Chromosomal Arms and FISH Reveal Complex Genome Architecture and Standardized Karyotype of Model Fish, Genus Carassius

. 2021 Sep 07 ; 10 (9) : . [epub] 20210907

Sex chromosome evolution in frogs-helpful insights from chromosome painting in the genus Engystomops

. 2021 Mar ; 126 (3) : 396-409. [epub] 20201112

Avian Expression Patterns and Genomic Mapping Implicate Leptin in Digestion and TNF in Immunity, Suggesting That Their Interacting Adipokine Role Has Been Acquired Only in Mammals

. 2019 Sep 11 ; 20 (18) : . [epub] 20190911

Morphologically indistinguishable hybrid Carassius female with 156 chromosomes: A threat for the threatened crucian carp, C. carassius, L

. 2018 ; 13 (1) : e0190924. [epub] 20180123

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace