Morphologically indistinguishable hybrid Carassius female with 156 chromosomes: A threat for the threatened crucian carp, C. carassius, L

. 2018 ; 13 (1) : e0190924. [epub] 20180123

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29360831

The crucian carp Carassius carassius (Linnaeus, 1758), is native to many European freshwaters. Despite its wide distribution, the crucian carp is declining in both the number and sizes of populations across much of its range. Here we studied 30 individuals of a putative pure population from Helsinki, Finland. Despite clear external morphological features of C. carassius, an individual was of a higher ploidy level than the others. We therefore applied a set of molecular genetic (S7 nuclear and cytochrome b mitochondrial genes) and cytogenetic tools (sequential fluorescent 4', 6-diamidino-2-phenylindole [DAPI], Chromomycin A3 [CMA3], C-banding and in situ hybridization [FISH] with both 5S and 28S ribosomal DNA probes) to determine its origin. While all examined characteristics of a diploid representative male (CCAHe2Fi) clearly corresponded to those of C. carassius, a triploid individual (CCAHe1Fi) was more complex. Phylogenetic analysis revealed that the nuclear genome of CCAHe1Fi contained three haploid sets: two C. gibelio and one C. carassius. However the mitochondrial DNA was that of C. gibelio, demonstrating its hybrid origin. The FISH revealed three strong (more intensive) 5S rDNA loci, confirming the triploid status, and an additional 24 weak (less intensive) signals were observed in the chromosome complement of CCAHe1Fi. On the other hand, only two strong and 16 weak 5S rDNA signals were visible on the chromosomes of the CCAHe2Fi male. 28S rDNA FISH revealed four strong signals in both CCAHe1Fi and CCAHe2Fi individuals. CMA3 staining revealed four to six CMA3-positive bands of CCAHe1Fi, while that of diploids contained only two to four. The fact that a polyploid hybrid Carassius female with a strong invasive potential may share morphological characters typical for endangered C. carassius highlights a need to combine genetic investigations of Carassius cryptic diversity with conservation measures of C. carassius in Europe.

Zobrazit více v PubMed

Baack EJ, Rieseberg LH. A genomic view of introgression and hybrid speciation. Curr Opin Genet Dev. 2007;17: 513–518. doi: 10.1016/j.gde.2007.09.001 PubMed DOI PMC

Payseur BA, Rieseberg LH. A genomic perspective on hybridization and speciation. Mol Ecol. 2016;25: 2337–2360. doi: 10.1111/mec.13557 PubMed DOI PMC

Kottelat M, Freyhof J. Handbook of European freshwater fishes Cornol: Kottelat and Berlin: Freyhof; 2007.

Roberts DG, Gray CA, West RJ, Ayre DJ. Evolutionary impacts of hybridization and interspecific gene flow on an obligately estuarine fish. J Evol Biol. 2009;22: 27–35. doi: 10.1111/j.1420-9101.2008.01620.x PubMed DOI

Haynes GD, Gongora J, Gilligan DM, Grewe P, Moran C, Nicholas FW. Cryptic hybridization and introgression between invasive Cyprinid species Cyprinus carpio and Carassius auratus in Australia: implications for invasive species management. Anim Conserv. 2012;15: 83–94. doi: 10.1111/j.1469-1795.2011.00490.x DOI

Wyatt PMW, Pitts CS, Butlin RK. A molecular approach to detect hybridization between bream Abramis brama, roach Rutlius rutilus and rudd Scardinius erythrophthalmus. J Fish Biol. 2006;69: 52–71. doi: 10.1111/j.1095-8649.2006.01104.x DOI

Sayer CD, Copp GH, Emson D, Godard MJ, Zięba G, Wesley KJ. Towards the conservation of crucian carp Carassius carassius: understanding the extent and causes of decline within part of its native English range. J Fish Biol. 2011;79: 1608–24. doi: 10.1111/j.1095-8649.2011.03059.x PubMed DOI

Mandrak NE, Cudmore B. The fall of native fishes and the rise of non-native fishes in the Great Lakes Basin. Aquat Ecosyst Health Manag. 2010;13: 255–268. doi: 10.1080/14634988.2010.507150 DOI

Cambray JA. Impact on indigenous species biodiversity caused by the globalisation of alien recreational freshwater fisheries. Hydrobiologia. 2003;500: 217–230. doi: 10.1023/A:1024648719995 DOI

Helfman GS. Fish conservation: a guide to understanding and restoring global aquatic biodiversity and fishery resources Washington: Island Press; 2007.

Savini D, Occhipinti-Ambrogi A, Marchini A, Tricarico E, Gherardi F, Olenin S, et al. The top 27 animal alien species introduced into Europe for aquaculture and related activities. J Appl Ichthyol. 2010;26: 1–7. doi: 10.1111/j.1439-0426.2010.01503.x DOI

Yang L, Sado T, Vincent Hirt M, Pasco-Viel E, Arunachalam M, Li J, et al. Phylogeny and polyploidy: resolving the classification of cyprinine fishes (Teleostei: Cypriniformes). Mol Phylogenet Evol. Elsevier Inc.; 2015;85: 97–116. doi: 10.1016/j.ympev.2015.01.014 PubMed DOI

Jeffries DL, Copp GH, Lawson Handley L, Olsén KH, Sayer CD, Hänfling B. Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius, L. Mol Ecol. 2016;25: 2997–3018. doi: 10.1111/mec.13613 PubMed DOI

Jeffries DL, Copp GH, Maes GE, Lawson Handley L, Sayer CD, Hänfling B. Genetic evidence challenges the native status of a threatened freshwater fish (Carassius carassius) in England. Ecol Evol. 2017;7: 2871–2882. doi: 10.1002/ece3.2831 PubMed DOI PMC

Lusk S, Hanel L, Lojkásek B, Lusková V, Muška M. The Red List of lampreys and fishes of the Czech Republic In: Němec M, Chobot K, editors. Red List of threatened species of the Czech Republic, Vertebrates. Prague: Příroda; 2017. pp. 51–82.

Mezhzherin SV., Kokodii SV., Kulish AV., Verlatii DB, Fedorenko LV. Hybridization of crucian carp Carassius carassius (Linnaeus, 1758) in Ukrainian reservoirs and the genetic structure of hybridsHybridization of crucian carp Carassius carassius (Linnaeus, 1758) in Ukrainian reservoirs and the genetic structure of hybrids. Cytol Genet. 2012;46: 28–35. doi: 10.3103/S0095452712010069 PubMed DOI

Rylková K, Kalous L, Bohlen J, Lamatsch DK, Petrtýl M. Phylogeny and biogeographic history of the cyprinid fish genus Carassius (Teleostei: Cyprinidae) with focus on natural and anthropogenic arrivals in Europe. Aquaculture. 2013;380–383: 13–20. doi: 10.1016/j.aquaculture.2012.11.027 DOI

Lusková V, Lusk S, Halačka K, Vetešník L. Carassius auratus gibelio—The most successful invasive fish in waters of the Czech Republic. Russ J Biol Invasions. 2010;1: 176–180. doi: 10.1134/S2075111710030069 DOI

Takada M, Tachihara K, Kon T, Yamamoto G, Iguchi K, Miya M, et al. Biogeography and evolution of the Carassius auratus-complex in East Asia. BMC Evol Biol. 2010;10: 7 doi: 10.1186/1471-2148-10-7 PubMed DOI PMC

Ojima Y, Takai A. Further cytogenetical studies on the origin of the gold-fish. Proc Japan Acad Ser B Phys Biol Sci. 1979;55: 346–350. doi: 10.2183/pjab.55.346 DOI

Toth B, Varkonyi E, Hidas A, Edvine Meleg E, Varadi L. Genetic analysis of offspring from intra- and interspecific crosses of Carassius auratus gibelio by chromosome and RAPD analysis. J Fish Biol. 2005;66: 784–797. doi: 10.1111/j.1095-8649.2005.00644.x DOI

Ráb P, Bohlen J, Rábová M, Flajshans M, Kalous L. Cytogenetics as a tool box in fish conservation: the present situation in Europe In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG, editors. Fish Cytogenetics. Enfield: CRC Press; 2007. pp. 229–241.

Kalous L, Knytl M. Karyotype diversity of the offspring resulting from reproduction experiment between diploid male and triploid female of silver Prussian carp, Carassius gibelio (Cyprinidae, Actinopterygii). Folia Zool. 2011;60: 115–121.

Boroń A, Szlachciak J, Juchno D, Grabowska A, Jagusztyn B, Porycka K. Karyotype, morphology, and reproduction ability of the Prussian carp, Carassius gibelio (Actinopterygii: Cypriniformes: Cyprinidae), from unisexual and bisexual populations in Poland. Acta Ichthyol Piscat. 2011;41: 19–28. doi: 10.3750/AIP2011.41.1.04 DOI

Knytl M, Kalous L, Ráb P. Karyotype and chromosome banding of endangered crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae). Comp Cytogenet. 2013;7: 205–15. doi: 10.3897/CompCytogen.v7i3.5411 PubMed DOI PMC

Cherfas NB. Natural triploidy in females of the unisexual form of silver crucian carp (Carassius auratus gibelio Bloch). Genetika. 1966;2: 16–24.

Peňáz M, Prokeš M, Ráb P. Cytological analysis, gynogenesis and early development of Carassius auratus gibelio. Acta Sci Nat Brno. 1979;13: 1–33.

Hänfling B, Bolton P, Harley M, Carvalho GR, Hanfling B, Bolton P, et al. A molecular approach to detect hybridisation between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius spp. and Cyprinus carpio). Freshw Biol. 2005;50: 403–417. doi: 10.1111/j.1365-2427.2004.01330.x DOI

Papoušek I, Vetešník L, Halačka K, Lusková V, Humpl M, Mendel J, et al. Identification of natural hybrids of gibel carp Carassius auratus gibelio (Bloch) and crucian carp Carassius carassius (L.) from lower Dyje River floodplain (Czech Republic). J Fish Biol. 2008;72: 1230–1235. doi: 10.1111/j.1095-8649.2007.01783.x DOI

Wouters J, Janson S, Lusková V, Olsén KH. Molecular identification of hybrids of the invasive gibel carp Carassius auratus gibelio and crucian carp Carassius carassius in Swedish waters. J Fish Biol. 2012;80: 2595–604. doi: 10.1111/j.1095-8649.2012.03312.x PubMed DOI

Lamatsch DK, Stöck M. Sperm-dependent parthenogenesis and hybridogenesis in teleost fishes In: Schön I, Martens K, Dijk P, editors. Lost Sex. Dordrecht: Springer Netherlands; 2009. pp. 399–432. doi: 10.1007/978-90-481-2770-2_19 DOI

Jiang Y, Yu H, Chen B, Liang S, Shan S. Biological effect of heterologous sperm on gynogenetic offspring in Carassius auratus gibelio. Acta Hydrobiol Sin. 1983;

Gui JF, Liang SC, Zhu LF, Jiang YG. Discovery of multiple tetraploids in artificially propagated populations of allogynogenetic silver crucian carp and their breeding potentialities. Chinese Sci Bull. 1993;38: 327.

Janko K, Bohlen J, Lamatsch DK, Flajšhans M, Epplen JT, Ráb P, et al. The gynogenetic reproduction of diploid and triploid hybrid spined loaches (Cobitis: Teleostei), and their ability to establish successful clonal lineages—on the evolution of polyploidy in asexual vertebrates. Genetica. 2007;131: 185–194. doi: 10.1007/s10709-006-9130-5 PubMed DOI

Zhao J, Liu LG, Chen XL, Qing N, Dong CW. Karyotypic analysis of the multiple tetraploid allogynogenetic pengze crucian carp and its parents. Aquaculture. 2004;237: 117–129. doi: 10.1016/j.aquaculture.2004.05.001 DOI

Zhu HP, Gui JF. Identification of genome organization in the unusual allotetraploid form of Carassius auratus gibelio. Aquaculture. 2007;265: 109–117. doi: 10.1016/j.aquaculture.2006.10.026 DOI

Knytl M, Kalous L, Symonová R, Rylková K, Ráb P. Chromosome studies of European cyprinid fishes: cross-species painting reveals natural allotetraploid origin of a Carassius female with 206 chromosomes. Cytogenet Genome Res. 2013;139: 276–83. doi: 10.1159/000350689 PubMed DOI

Gui JF, Zhou L. Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio. Sci China Life Sci. 2010;53: 409–15. doi: 10.1007/s11427-010-0092-6 PubMed DOI

Xiao J, Zou T, Chen Y, Chen L, Liu S, Tao M, et al. Coexistence of diploid, triploid and tetraploid crucian carp (Carassius auratus) in natural waters. BMC Genet. 2011;12: 20 doi: 10.1186/1471-2156-12-20 PubMed DOI PMC

Gui J, Liang S, Zhu L, Jiang Y. Discovery and breeding potential of compound tetraploid allogynogenetic silver crucian carp in artificial population. Chin Sci Bull. 1992;37: 255–262.

Gui JF, Liang SC, Zhu LF, Jiang YG. Discovery of two different reproductive development modes of the eggs of artificial multiple tetraploid allogynogenetic Silver crucian carp. Chinese Sci Bull. 1993;38: 332–337.

Baruš V, Oliva O. Mihulovci (Petromyzontes) a ryby (Osteichthyes). Prague: Academia; 1995.

Bertollo L, Cioffi M. Direct chromosome preparation from freshwater teleost fishes In: Ozouf-Costaz C, Pisano E, Foresti F, Foresti L de AT, editors. Fish cytogenetic techniques: Ray-Fin fishes and chondrichthyans. Enfield: CRC Press; 2015. pp. 21–26.

Šlechtová V, Bohlen J, Freyhof J, Ráb P. Molecular phylogeny of the Southeast Asian freshwater fish family Botiidae (Teleostei: Cobitoidea) and the origin of polyploidy in their evolution. Mol Phylogenet Evol. 2006;39: 529–541. doi: 10.1016/j.ympev.2005.09.018 PubMed DOI

Chow S, Hazama K. Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol Ecol. 1998;7: 1255–6. doi: 10.1046/j.1365-294x.1998.00406.x PubMed DOI

Hall T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41: 95–98.

Swofford D. PAUP. Phylogenetic analysis using parsimony (and other methods) Sunderland: Sinauer Associates; 2000.

Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17: 754–755. doi: 10.1093/bioinformatics/17.8.754 PubMed DOI

Rylková K, Kalous L, Šlechtová V, Bohlen J. Many branches, one root: First evidence for a monophyly of the morphologically highly diverse goldfish (Carassius auratus). Aquaculture. 2010;302: 36–41. doi: 10.1016/j.aquaculture.2010.02.003 DOI

Kalous L, Šlechtová V, Bohlen J, Petrtýl M, Švátora M. First European record of Carassius langsdorfii from the Elbe basin. J Fish Biol. 2007;70: 132–138. doi: 10.1111/j.1095-8649.2006.01290.x DOI

Kalous L, Rylková K, Bohlen J, Šanda R, Petrtýl M. New mtDNA data reveal a wide distribution of the Japanese ginbuna Carassius langsdorfii in Europe. J Fish Biol. 2013;82: 703–707. doi: 10.1111/j.1095-8649.2012.03492.x PubMed DOI

Kalous L, Bohlen J, Rylková K, Petrtýl M. Hidden diversity within the Prussian carp and designation of a neotype for Carassius gibelio (Teleostei: Cyprinidae). Ichthyol Explor Freshwaters. 2012;23: 11–18.

Komiya H, Takemura S. Nucleotide sequence of 5S ribosomal RNA from rainbow trout (Salmo gairdnerii) liver. J Biochem. 1979;86: 1067–80. doi: 10.1093/oxfordjournals.jbchem.a132601 PubMed DOI

Naito E, Dewa K, Ymanouchi H, Kominami R. Ribosomal ribonucleic acid (rRNA) gene typing for species identification. J Forensic Sci. ASTM International; 1992;37: 396–403. doi: 10.1520/JFS13249J PubMed DOI

Alves-Costa FA, Martins C, de Matos FDC, Foresti F, Oliveira C, Wasko AP. 5S rDNA characterization in twelve Sciaenidae fish species (Teleostei, Perciformes): Depicting gene diversity and molecular markers. Genet Mol Biol. 2008;31: 303–307. doi: 10.1590/S1415-47572008000200025 DOI

Sember A, Bohlen J, Šlechtová V, Altmanová M, Symonová R, Ráb P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol Biol. 2015;15: 1–22. doi: 10.1186/s12862-014-0274-0 PubMed DOI PMC

Zhang Q, Cooper RK, Tiersch TR. Chromosomal location of the 28S ribosomal RNA gene of channel catfish by in situ polymerase chain reaction. J Fish Biol. 2000;56: 388–397. doi: 10.1006/jfbi.1999.1164 DOI

Cremer M, Grasser F, Lanctôt C, Müller S, Neusser M, Zinner R, et al. Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol Biol. 2008;463: 205–39. doi: 10.1007/978-1-59745-406-3_15 PubMed DOI

Symonová R, Sember A, Majtánová Z, Ráb P. Characterization of fish genomes by GISH and CGH In: Ozouf-Costaz C, Pisano E, Foresti F, Foresti L de AT, editors. Fish cytogenetic techniques: Ray-Fin fishes and chondrichthyans. Enfield: CRC Press; 2015. pp. 118–131.

Zhu HP, Ma DM, Gui JF. Triploid origin of the gibel carp as revealed by 5S rDNA localization and chromosome painting. Chromosom Res. 2006;14: 767–776. doi: 10.1007/s10577-006-1083-0 PubMed DOI

Guerra MDS, Valim-Labres ME, Porto MDM, Matsumura ATS. Reviewing the chromosome nomenclature of Levan et al. Brazilian J Genet. 1986;IX: 741–743.

Rábová M, Völker M, Pelikánová Š, Ráb P. Sequential chromosome banding in fishes In: Ozouf-Costaz C, Pisano E, Foresti F, Foresti L de AT, editors. Fish cytogenetic techniques: Ray-Fin fishes and chondrichthyans. Enfield: CRC Press; 2015. pp. 92–102.

Wheeler A. Status of the crucian carp, Carassius carassius (L.), in the UK. Fish Manag Ecol. 2000;7: 315–322. doi: 10.1046/j.1365-2400.2000.007004315.x DOI

Spoz A, Boron A, Porycka K, Karolewska M, Ito D, Abe S, et al. Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes. Comp Cytogenet. 2014;8: 233–248. doi: 10.3897/CompCytogen.v8i3.7718 PubMed DOI PMC

Alves MJ, Coelho MM, Collares-Pereira MJ. Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review. Genetica. 2001;111: 375–85. PubMed

Zhang C, Liu S, Li T, Liu Y. Studies of chromosome sets in embryonic cell of hybrid fish of red crucian crap (♀)× common crap (♂). J Fish China. 2011; 1370–1373.

Šimková A, Hyršl P, Halačka K, Vetešník L. Physiological and condition-related traits in the gynogenetic-sexual Carassius auratus complex: different investments promoting the coexistence of two reproductive forms? BMC Evol Biol. 2015;15: 154 doi: 10.1186/s12862-015-0438-6 PubMed DOI PMC

Avise JC. Evolutionary perspectives on clonal reproduction in vertebrate animals. Proc Natl Acad Sci U S A. 2015;112: 8867–73. doi: 10.1073/pnas.1501820112 PubMed DOI PMC

Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: A review of research. Cytogenet Genome Res. 2013;141: 90–102. doi: 10.1159/000354832 PubMed DOI

Inafuku J, Nabeyama M, Kikuma Y, Saitoh J, Kubota S, Kohno SI. Chromosomal location and nucleotide sequences of 5S ribosomal DNA of two cyprinid species (Osteichthyes, Pisces). Chromosom Res. 2000;8: 193–199. doi: 10.1023/A:1009292610618 PubMed DOI

Symonová R, Majtánová Z, Sember A, Staaks GBO, Bohlen J, Freyhof J, et al. Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol Biol. 2013;13: 42 doi: 10.1186/1471-2148-13-42 PubMed DOI PMC

Gromicho M, Coutanceau J-P, Ozouf-Costaz C, Collares-Pereira MJ. Contrast between extensive variation of 28S rDNA and stability of 5S rDNA and telomeric repeats in the diploid-polyploid Squalius alburnoides complex and in its maternal ancestor Squalius pyrenaicus (Teleostei, Cyprinidae). Chromosome Res. 2006;14: 297–306. doi: 10.1007/s10577-006-1047-4 PubMed DOI

Mantovani M, Dos Santos Abel LD, Moreira-Filho O. Conserved 5S and variable 45S rDNA chromosomal localisation revealed by FISH in Astyanax scabripinnis (Pisces, Characidae). Genetica. 2005;123: 211–216. doi: 10.1007/s10709-004-2281-3 PubMed DOI

Volker M, Sonnenberg R, Ráb P, Kullmann H. Karyotype differentiation in Chromaphyosemion killifishes (Cyprinodontiformes, Nothobranchiidae). III: extensive karyotypic variability associated with low mitochondrial haplotype differentiation in C. bivittatum. Cytogenet Genome Res. 2007;116: 116–26. doi: 10.1159/000097429 PubMed DOI

Gromicho M, Ozouf-Costaz C, Collares-Pereira MJ. Lack of correspondence between CMA3-, Ag-positive signals and 28S rDNA loci in two Iberian minnows (Teleostei, Cyprinidae) evidenced by sequential banding. Cytogenet Genome Res. 2005;109: 507–511. doi: 10.1159/000084211 PubMed DOI

Tymowska J, Fischberg M. A comparison of the karyotype, constitutive heterochromatin, and nucleolar organizer regions of the new tetraploid species Xenopus epitropicalis Fischberg and Picard with those of Xenopus tropicalis Gray (Anura, Pipidae). Cytogenet Cell Genet. 1982;34: 149–57. doi: 10.1159/000131803 PubMed DOI

Knytl M, Smolík O, Kubíčková S, Tlapáková T, Evans BJ, Krylov V. Chromosome divergence during evolution of the tetraploid clawed frogs, Xenopus mellotropicalis and Xenopus epitropicalis as revealed by Zoo-FISH. Cimini D, editor. PLoS One. 2017;12: e0177087 doi: 10.1371/journal.pone.0177087 PubMed DOI PMC

Jotterand M, Fischberg M. A chromosome mutation affecting the number of nucleoli in Xenopus borealis Parker. Experientia. 1974;30: 1003–1005. doi: 10.1007/BF01938973 PubMed DOI

Choleva L, Janko K. Rise and persistence of animal polyploidy: evolutionary constraints and potential. Cytogenet Genome Res. 2013;140: 151–70. doi: 10.1159/000353464 PubMed DOI

Lusk S, Hanel L, Lusková V. Red List of the ichthyofauna of the Czech Republic: development and present status. Folia Zool. 2004;53: 215–226.

Economidis PS. Endangered freshwater fishes of Greece. Biol Conserv. 1995;72: 201–211. doi: 10.1016/0006-3207(94)00083-3 DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A Detailed Karyological Investigation of three Endemic Cobitis Linnaeus, 1758 Species (Teleostei, Cobitidae) in Anatolia, Türkiye

. 2024 ; 164 (5-6) : 243-256. [epub] 20241202

Cytogenetic Analysis of the Fish Genus Carassius Indicates Divergence, Fission, and Segmental Duplication as Drivers of Tandem Repeat and Microchromosome Evolution

. 2024 Mar 02 ; 16 (3) : .

Consequences of polyploidy and divergence as revealed by cytogenetic mapping of tandem repeats in African clawed frogs (Xenopus, Pipidae)

. 2023 ; 69 (4) : 81. [epub] 20230721

Chromosomes of Asian Cyprinid Fishes: Genomic Differences in Conserved Karyotypes of 'Poropuntiinae' (Teleostei, Cyprinidae)

. 2023 Apr 20 ; 13 (8) : . [epub] 20230420

A Fish of Multiple Faces, Which Show Us Enigmatic and Incredible Phenomena in Nature: Biology and Cytogenetics of the Genus Carassius

. 2022 Jul 22 ; 23 (15) : . [epub] 20220722

Measurement of Chromosomal Arms and FISH Reveal Complex Genome Architecture and Standardized Karyotype of Model Fish, Genus Carassius

. 2021 Sep 07 ; 10 (9) : . [epub] 20210907

Chromosomes of Asian cyprinid fishes: Variable karyotype patterns and evolutionary trends in the genus Osteochilus (Cyprinidae, Labeoninae, "Osteochilini")

. 2020 ; 43 (4) : e20200195. [epub] 20201106

Taxonomic Diversity Not Associated with Gross Karyotype Differentiation: The Case of Bighead Carps, Genus Hypophthalmichthys (Teleostei, Cypriniformes, Xenocyprididae)

. 2020 Apr 28 ; 11 (5) : . [epub] 20200428

Chromosomes of Asian cyprinid fishes: cytogenetic analysis of two representatives of small paleotetraploid tribe Probarbini

. 2018 ; 11 () : 51. [epub] 20180904

Dynamics of tandemly repeated DNA sequences during evolution of diploid and tetraploid botiid loaches (Teleostei: Cobitoidea: Botiidae)

. 2018 ; 13 (3) : e0195054. [epub] 20180328

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...