Physiological and condition-related traits in the gynogenetic-sexual Carassius auratus complex: different investments promoting the coexistence of two reproductive forms?
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26245328
PubMed Central
PMC4545816
DOI
10.1186/s12862-015-0438-6
PII: 10.1186/s12862-015-0438-6
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- diploidie MeSH
- ekosystém MeSH
- karas zlatý anatomie a histologie genetika imunologie fyziologie MeSH
- rozmnožování MeSH
- triploidie MeSH
- vodní hospodářství ekonomika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Carassius auratus complex is an extraordinary species complex including the diploid and polyploid forms exhibiting asexual and sexual reproduction modes. The coexistence of both forms in the same habitats is currently reported. The stable coexistence of asexual and sexual forms assumes some disadvantages for asexuals that balance the costs of sex. In our study, we hypothesized and tested the differences in physiological (including heamatological and immunological), growth-related, condition-related, and fitness-related traits between gynogenetic females and sexuals. RESULTS: Our results revealed similar growth performance in gynogenetic females and sexuals measured by body size and weight, or expressed by condition factor. The energy allocation in reproduction measured by the relative size of gonads revealed no difference between gynogenetic and sexual females; in addition, both females in spawning expressed the same estradiol levels in blood plasma. We found a gender specific trade-off between investment in reproduction and immunocompetence (measured by the spleen-somatic index). Higher aerobic performance expressed by the heart index and higher oxygen-carrying capacity were found in sexual males, with increasing values before and during spawning. Our study evidenced significantly lower aerobic performance but higher oxygen-carrying capacity per erythrocyte in gynogenetic females when compared to sexuals. IgM production differed between gynogens and sexuals of C. auratus complex. CONCLUSIONS: Our study indicates that a similar amount of energy is invested by both gynogenetic and sexual females of C. auratus complex in reproductive behaviour. We suggest that lower aerobic performance in gynogens may represent their physiological disadvantage balancing the cost of sexual reproduction. A trade-off between the number of erythrocytes and the oxygen-carrying capacity per erythrocyte in sexual males and gynogenetic females may contribute to the coexistence of gynogenetic and sexual forms. In addition, the differences in specific immunity between gynogens and sexuals may also reduce the evolutionary disadvantage of sexual reproduction. In conclusion, we propose that several mechanisms contribute to the coexistence of the gynogenetic-sexual C. auratus complex.
Zobrazit více v PubMed
Beukeboom LW, Vrijenhoek RC. Evolutionary genetics of sperm-dependent parthenogenesis. J Evol Biol. 1998;11:755–82. doi: 10.1007/s000360050117. DOI
Maynard Smith J. The Evolution of Sex. Cambridge: Cambridge University Press; 1978.
Moore WS. Stability of small unisexual-bisexual populations of Poeciliopsis (Pisces-Poeciliidae) Ecology. 1975;56:791–808. doi: 10.2307/1936292. DOI
Moore WS. Components of fitness in a unisexual fish Poeciliopsis monarcha-occidentalis. Evolution. 1976;30:564–78. doi: 10.2307/2407580. PubMed DOI
Van Valen L. A new evolutionary law. Evol Theor. 1973;1:1–30.
Jaenike J. An hypothesis to account for the maintenance of sex within populations. Evol Theor. 1978;3:191–4.
Bell G. The Masterpiece of Nature: the Evolution and Genetics of Sexuality. Berkeley: University of California Press; 1982.
Hakoyama H, Iwasa Y. Coexistence of a sexual and an unisexual form stabilized by parasites. J Theor Biol. 2004;226:186–94. doi: 10.1016/j.jtbi.2003.08.012. PubMed DOI
Schlupp I. The evolutionary ecology of gynogenesis. Annu Rev Ecol Evol S. 2005;36:399–417. doi: 10.1146/annurev.ecolsys.36.102003.152629. DOI
Kokko H, Heubel KU, Rankin DJ. How populations persist when asexuality requires sex: the spatial dynamics of coping with sperm parasites. P Roy Soc B-Biol Sci. 2008;275:817–25. doi: 10.1098/rspb.2007.1199. PubMed DOI PMC
Weeks SC, Gaggiotti OE, Schenck RA, Vrijenhoek RC. Feeding behavior in sexual and clonal strains of Poecilopsis. Behav Ecol Sociobiol. 1992;30:1–6. doi: 10.1007/BF00168589. DOI
Scharnweber K, Plath M, Tobler M. Feeding efficiency and food competition in coexisting sexual and asexual livebearing fishes of the genus Poecilia. Environ Biol Fish. 2011;90:197–205. doi: 10.1007/s10641-010-9732-8. PubMed DOI
Endler JA. Interactions between predators and prey. In: Krebs JR, Davies NB, editors. Behavioural Ecology An Evolutionary Approach. 3. Oxford: Blackwell Scientific Publications; 1991. pp. 169–196.
Vrijenhoek RC. Ecological differentiation among clones: the frozen niche variation model. In: Wëhrmann K, Loeschcke V, editors. Population Biology and Evolution. Berlin: Springer; 1984.
Takada M, Tachihara K, Kon T, Yamamoto G, Iguchi K, Miya M, et al. Biogeography and evolution of the Carassius auratus-complex in East Asia. BMC Evol Biol. 2010;10:7. doi: 10.1186/1471-2148-10-7. PubMed DOI PMC
Rylková K, Kalous L, Bohlen J, Lamatsch DK, Petrtýl M. Phylogeny and biogeographic history of the cyprinid fish genus Carassius (Teleostei: Cyprinidae) with focus on natural and anthropogenic arrivals in Europe. Aquaculture. 2013;308–383:13–20. doi: 10.1016/j.aquaculture.2012.11.027. DOI
Papoušek I. Molecular-genetic analyses of Carassius species in the central Europe. Brno: Masaryk University; 2008.
Kottelat M, Freyhof J. Handbook of European Freshwater Fishes. Berlin: Kottelat Cornal, Switzerland and Freyhof; 2007.
Lusková V, Halačka K, Vetešník L, Lusk S. Changes of ploidy and sexuality status of „Carassius auratus” populations in the drainage area of the River Dyje (Czech Republic) Ecohydrol Hydrobiol. 2004;4:165–71.
Lusk S, Baruš V, Veselý V. On the occurrence of Carassius auratus in the Morava river drainage area. Folia Zool. 1977;26:377–81.
Paschos I, Nathanailides C, Tsoumani M, Perdikaris C, Gouva E, Leonardos I. Intra and inter-specific mating options for gynogenetic reproduction of Carassius gibelio (Bloch, 1783) in Lake Pamvotis (NW Greece) Belg J Zool. 2004;134:55–60.
Zou Z, Cui Y, Gui J, Yang Y. Growth and feed utilization in two strains of gibel carp, Carassius auratus gibelio: paternal effects in a gynogenetic fish. J Appl Ichtyol. 2001;17:54–8. doi: 10.1046/j.1439-0426.2001.00245.x. DOI
Zhou L, Wang Y, Gui J-F. Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio Bloch) as revealed by RAPD assays. J Mol Evol. 2000;51:498–506. PubMed
Zhang J, Sun M, Zhou L, Li Z, Liu Z, Li X-Y, et al. Meiosis completion and various sperm response lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio. Sci Rep. 2015;5:10898. doi: 10.1038/srep10898. PubMed DOI PMC
Peňáz M, Ráb P, Prokeš M. Cytological analysis, gynogenesis and early development of Carassius auratus gibelio. Acta Sci Natur Brno. 1979;13:1–33.
Vetešník L, Halačka K, Šimková A. The effect of ploidy and temporal changes in the biochemical profile of gibel carp (Carassius gibelio), a cyprinid fish species with dual reproductive strategies. Fish Physiol Biochem. 2013;39:171–80. doi: 10.1007/s10695-012-9688-z. PubMed DOI
Šimková A, Košař M, Vetešník L, Vyskočilová M. MHC genes and parasitism in Carassius gibelio, a diploid-triploid fish species with dual reproduction strategies. BMC Evol Biol. 2013;13:122. doi: 10.1186/1471-2148-13-122. PubMed DOI PMC
Xie J, Wen J-J, Chen B, Gui J-F. Differential gene expression in fully-grown oocytes between gynogenetic and gonochoristic crucian carps. Gene. 2001;271:109–16. doi: 10.1016/S0378-1119(01)00491-7. PubMed DOI
Holčík J, Hensel K. Handbook of Ichthyology. Bratislava: Obzor; 1972 (in Slovak).
Bolger T, Connolly PL. The selection of suitable indexes for the measurement and analysis of fish condition. J Fish Biol. 1989;34:171–82. doi: 10.1111/j.1095-8649.1989.tb03300.x. DOI
Svobodová Z, Pravda D, Paláčková J. Unified methods of haematological examination of fish. Vodňany: Methods No. 20, Research Institute of Fish Culture and Hydrobiology; 1991.
Poisot T, Šimková A, Hyršl P, Morand S. Interactions between immunocompetence, somatic condition and parasitism in the chub Leuciscus cephalus in early spring. J Fish Biol. 2009;75:667–1682. doi: 10.1111/j.1095-8649.2009.02400.x. PubMed DOI
Buchtíková S, Šimková A, Rohlenová K, Flajšhans M, Lojek A, Lilius EM, et al. The seasonal changes in innate immunity of the common carp (Cyprinus carpio) Aquaculture. 2011;318:169–75. doi: 10.1016/j.aquaculture.2011.05.013. DOI
McEwan AD, Fisher EW, Selman IE, Penhale WJ. A turbidity test for the estimation of immune globulin levels in neonatal calf serum. Clin Chim Acta. 1970;27:155–63. doi: 10.1016/0009-8981(70)90390-6. PubMed DOI
Mee JA, Chan C, Taylor EB. Coexistence of sperm-dependent asexuals and their sexual hosts: the role of differences in fitness-related traits. Environ Biol Fish. 2013;96:1111–21. doi: 10.1007/s10641-012-0107-1. DOI
Benfley TJ. The physiology and behavior of triploid fishes. Rev Fish Sci. 1999;7:39–67. doi: 10.1080/10641269991319162. DOI
Piferrer F, Beaumont A, Falguiere JC, Flajšhans M, Haffray P, Colombo L. Polyploid fish and shellfish: Production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture. 2009;3–4:125–56. doi: 10.1016/j.aquaculture.2009.04.036. DOI
Takada M, Tachihara K. Comparisons of age, growth, and maturity between male and female, and diploid and triploid individuals in Carassius auratus from Okinawa-jima Island, Japan. Aquat Conserv. 2009;19:806–14. doi: 10.1002/aqc.1032. DOI
Vetešník L, Lusk S, Halačka K, Spurný P. Morphometric characteristics and growth of Carassius auratus in the lower part of the River Dyje (Czech Republic) Ecohydrol Hydrobiol. 2004;4:215–21.
McLean E, Sadar MD, Devlin RH, Souza LM, Donaldson EM. Promotion of growth in diploid and triploid coho salmon with parental delivery of a recombinant porcine somatotropin. Aquat Living Resour. 1991;4:155–60. doi: 10.1051/alr:1991016. DOI
Franklin CE, Davie PS. Sexual maturity can double heart mass and cardiac power output in male rainbow trout. J Exp Biol. 1992;171:139–48.
Armstrong JD, West CL. Relative ventricular weight of wild Atlantic salmon parr in relation to sex, gonad maturation and migratory activity. J Fish Biol. 1994;44:453–7. doi: 10.1111/j.1095-8649.1994.tb01225.x. DOI
Altimiras J, Johnstone ADF, Lucas MC, Priede IG. Sex differences in the heart rate variability spectrum of free-swimming Atlantic salmon (Salmo salar L.) during the spawning season. Physiol Zool. 1996;69:770–84.
Clark TD, Hinch SG, Tailor BD, Frappell PB, Farell AP. Sex differences in circulatory oxygen transport parameters of sockeye salmon (Oncorhynchus nerka) on the spawning ground. J Comp Physiol B. 2009;179:663–71. doi: 10.1007/s00360-009-0349-1. PubMed DOI
Gamperl AK, Farrell AP. Cardiac plasticity in fishes: environmental influences and intraspecific differences. J Exp Biol. 2004;207:2539–50. doi: 10.1242/jeb.01057. PubMed DOI
Thorarensen H, Young C, Davie PS. 11-ketotestosterone stimulates growth of heart and red muscle in rainbow trout. Can J Zool. 1996;74:912–7. doi: 10.1139/z96-104. DOI
Davie PS, Thorarensen H. Heart growth in rainbow trout in response to exogenous testosterone and 17-alpha methyltestosterone. Comp Biochem Phys A. 1997;117:227–30. doi: 10.1016/S0300-9629(96)00236-8. DOI
Sandblom E, Clark TD, Hinch SG, Farell AP. Sex-specific differences in cardiac control and hematology of sockeye salmon (Oncorhynchus nerka) approaching their spawning grounds. Am J Physiol-Reg I. 2009;297:R1136–43. PubMed
Anatskaya OV, Vinogradov AE. Myocyte ploidy in heart chambers of birds with different locomotor activity. J Exp Zool. 2002;293:427–41. doi: 10.1002/jez.10114. PubMed DOI
Anatskaya OV, Vinogradov AE. Paradoxical relationship between protein content and nucleolar activity in mammalian cardiomyocytes. Geonome. 2004;47:565–78. doi: 10.1139/g04-015. PubMed DOI
Anatskaya OV, Vinogradov AE. Genome multiplication as adaptation to tissue survival: evidence from gene expression in mammalian heart and liver. Genomics. 2007;89:70–80. doi: 10.1016/j.ygeno.2006.08.014. PubMed DOI
Hakoyama H, Nishimura T, Matsubara N, Iguchi K. Difference in parasite load and nonspecific immune reaction between sexual and gynogenetic forms of Carassius auratus. Biol J Linn Soc. 2001;72:401–7. doi: 10.1111/j.1095-8312.2001.tb01326.x. DOI
Šimková A, Vojtek L, Halačka K, Hyršl P, Vetešník L. The effect of hybridization on fish physiology, immunity and blood biochemistry: a case study in hybridizing Cyprinus carpio and Carassius gibelio (Cyprinidae) Aquaculture. 2015;435:381–9. doi: 10.1016/j.aquaculture.2014.10.021. DOI
Gabor CR, Aspbury AS, Ma J, Nice CC. The role of androgens in species recognition and sperm production in Atlantic mollies (Poecilia mexicana) Physiol Behav. 2012;105:885–92. doi: 10.1016/j.physbeh.2011.10.024. PubMed DOI
Ryan MJ, Dres LA, Batra P, Hillis DM. Male mate preferences in a gynogenetic species complex of Amazon mollies. Anim Behav. 1996;52:1225–36. doi: 10.1006/anbe.1996.0270. DOI
Gabor CR, Ryan MJ. Geographical variation in reproductive character displacement in mate choice by male sailfin mollies. P Roy Soc B-Biol Sci. 2001;268:1063–70. doi: 10.1098/rspb.2001.1626. PubMed DOI PMC
Schlupp I, Plath M. Male mate choice and sperm allocation in a sexual/asexual mating complex of Poecilia (Poeciliidae, Teleostei) Biol Letters. 2005;1:169–71. doi: 10.1098/rsbl.2005.0306. PubMed DOI PMC
Eslamloo K, Akhavan SR, Fallad FJ, Henry MA. Variations of physiological and innate immunological responses in goldfish (Carassius auratus) subjected to recurrent acute stress. Fish Shellfish Immun. 2014;37:147–53. doi: 10.1016/j.fsi.2014.01.014. PubMed DOI
Fast MD, Hosoya S, Johnson SC, Alfonso LB. Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short- and long-term stress. Fish Shellfish Immun. 2008;24:194–204. doi: 10.1016/j.fsi.2007.10.009. PubMed DOI
Tort L. Stress and immune modulation in fish. Dev Comp Immunol. 2011;35:1366–75. doi: 10.1016/j.dci.2011.07.002. PubMed DOI
Liley NR, Kroon FJ. Male dominance, plasma hormone concentrations, and availability of milt in male rainbow trout (Oncorhynchus mykiss) Can J Zoolog. 1995;73:826–36. doi: 10.1139/z95-097. DOI