MHC genes and parasitism in Carassius gibelio, a diploid-triploid fish species with dual reproduction strategies
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23768177
PubMed Central
PMC3691641
DOI
10.1186/1471-2148-13-122
PII: 1471-2148-13-122
Knihovny.cz E-zdroje
- MeSH
- diploidie * MeSH
- genetická variace MeSH
- genotyp MeSH
- hlavní histokompatibilní komplex * MeSH
- kapři genetika fyziologie MeSH
- rozmnožování * MeSH
- rybí proteiny genetika MeSH
- triploidie * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rybí proteiny MeSH
BACKGROUND: The gibel carp is a fish species with dual reproduction modes, gynogenesis and sexual reproduction, coexisting in mixed diploid-polyploid populations. Following the Red Queen (RQ) assumption, asexual organisms are, due to their low genetic diversity, targets for parasite adaptation. Because MHC polymorphism is maintained by selection from parasites and sexual selection, MHC genes are considered as a suitable candidate for testing the RQ hypothesis. In this study, we investigated MHC variability and the selection pressure acting on MHC genes in sexual diploids and asexual triploids. In addition, we tested whether the asexual form of gibel carp suffers from higher parasite loads than the sexual form. RESULTS: At the population level, genotype and allelic diversity of MHC were reduced in gynogenetic triploids when compared to sexual diploids. Different patterns in positively selected sites (PSS) between gynogens and sexual gibel carp were also found. A weak difference in parasite species richness was found between sexual fish and gynogens. However, two common clones of gynogens were significantly more parasitized than sexual diploids or other gynogens with rare MHC genotypes. At the individual level, the higher number of alleles was not associated with higher parasitism in either sexual diploids or gynogens. CONCLUSIONS: The differences in MHC diversity between gynogenetic triploids and sexual diploids are in accordance with the hypothesis of sexually-mediated selection increasing MHC diversity and fulfil a prerequisite of the Red Queen hypothesis. The different patterns in PSS between gynogens and sexual gibel carp also suggest the potential role of sexual selection and supports parasite-mediated selection maintaining MHC diversity. We showed that the most common MHC genotypes of gynogenetic triploids are the target of parasite selection. Our results suggest that the MHC genotype in gibel carp is more important than allelic number for immunocompetence.
Zobrazit více v PubMed
Mee JA, Rowe L. A comparison of parasite loads on asexual and sexual Phoxinus (Pisces: Cyprinidae) Can J Zoolog. 2006;84:808–816. doi: 10.1139/z06-064. DOI
Tobler M, Schlupp I. Differential susceptibility to food stress in neonates of sexual and asexual mollies (Poecilia, Poeciliidae) Evol Ecol. 2010;24:39–47. doi: 10.1007/s10682-008-9288-7. DOI
Hakoyama H, Nishimura T, Matsubara N, Iguchi K. Difference in parasite load and nonspecific immune reaction between sexual and gynogenetic forms of Carassius auratus. Biol J Linn Soc. 2001;72:401–407. doi: 10.1111/j.1095-8312.2001.tb01326.x. DOI
Maynard Smith J. The Evolution of Sex. Cambridge: Cambridge University Press; 1978.
Bell G. The masterpiece of nature: the evolution and genetics of sexuality. Berkeley: University of California Press; 1982.
Lynch M, Burger R, Butcher D, Gabriel W. The mutational meltdown in asexual populations. J Hered. 1993;84:339–344. PubMed
Ching B, Jamieson S, Heath JW, Heath DD, Hubberstey A. Transcriptional differences between triploid and diploid Chinook salmon (Oncorhynchus tshawytscha) during live Vibrio anguillarum challenge. Heredity. 2010;104:224–234. doi: 10.1038/hdy.2009.108. PubMed DOI
Hamilton WD, Axelrod R, Tanese R. Sexual reproduction as an adaption to resist parasites (a review) P Natl Acad Sci USA. 1990;87:3566–3573. doi: 10.1073/pnas.87.9.3566. PubMed DOI PMC
Weeks SC. A reevaluation of the Red Queen model for the maintenance of sex in a clonal-sexual fish complex (Poeciliidae: Poeciliopsis) Can J Fish Aquat Sci. 1996;53:1157–1164.
Lampert KP, Fischer P, Schartl M. Major histocompatibility complex variability in the clonal Amazon molly, Poecilia formosa: is copy number less important than genotype? Mol Ecol. 2009;18:1124–1136. doi: 10.1111/j.1365-294X.2009.04097.x. PubMed DOI
Kokko H, Heubel KU, Rankin DJ. How populations persist when asexuality requires sex: the spatial dynamics of coping with sperm parasites. Proc R Soc B. 2008;275:817–825. doi: 10.1098/rspb.2007.1199. PubMed DOI PMC
Van Valen L. A new evolutionary law. Evol Theor. 1973;1:1–30.
Jaenike J. An hypothesis to account for the maitenance of sex within populations. Evol Theor. 1978;3:191–194.
Hamilton WD. Sex versus non-sex versus parasite. Oikos. 1980;35:282–290. doi: 10.2307/3544435. DOI
Seger J, Hamilton WD. In: The Evolution of Sex. Michod RE, Levin BR, editor. Sunderland, MA: Sinauer Associates; 1988. Parasites and sex; pp. 176–193.
Lively CM, Craddock C, Vrijenhoek RC. Red Queen hypothesis supported by parasitism in sexual and clonal fish. Nature. 1990;344:864–867. doi: 10.1038/344864a0. DOI
Tobler M, Schlupp I. Parasites in sexual and asexual mollies (Poecilia, Poeciliidae, Teleostei): a case for the Red Queen? Biol Letters. 2005;1:166–168. doi: 10.1098/rsbl.2005.0305. PubMed DOI PMC
Klein J. The Natural History of the Major Histocompatibility Complex. New York: John Wiley; 1986.
Klein J, Figueroa F. Evolution of MHC. CRC Cr Rev Imunol. 1986;6:295–386. PubMed
Hughes AL, Nei M. Maintenance of MHC polymorphism. Nature. 1992;355:402–403. PubMed
Penn DJ, Potts WK. The evolution of mating preferences and major histocompatibility complex genes. Am Nat. 1999;153:145–164. doi: 10.1086/303166. PubMed DOI
Schaschl H, Tobler M, Plath M, Penn DJ, Schlupp I. Polymorphic MHC loci in an asexual fish, the amazon molly (Poecilia formosa; Poeciliidae) Mol Ecol. 2008;17:5220–5230. doi: 10.1111/j.1365-294X.2008.03997.x. PubMed DOI
Hänfling B, Bolton P, Harley M, Carvalho GR. A molecular approach to detect hybridisation between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius spp. and Cyprinus carpio) Freshwater Biol. 2005;50:403–417. doi: 10.1111/j.1365-2427.2004.01330.x. DOI
Lusk S, Baruš V, Veselý V. On the occurrence of Carassius auratus in the Morava river drainage area. Folia Zool. 1977;26:377–381.
Peňáz M, Ráb P, Prokeš M. Cytological analysis, gynogenesis and early development of Carassius auratus gibelio. Acta Sc Nat Brno. 1979;13:1–33.
Lusková V, Halačka K, Vetešník L, Lusk S. Changes of ploidy and sexuality status of “Carassius auratus” populations in the drainage area of the River Dyje (Czech Republic) Ecohydrol Hydrobiol. 2004;4:165–171.
Vetemaa M, Eschbaum R, Albert A, Saat T. Distribution, sex ration and growth of Carassius gibelio (Bloch) in coastal and inland water of Estonia (north-eastern Baltic Sea) J Appl Ichthyol. 2005;21:287–294. doi: 10.1111/j.1439-0426.2005.00680.x. DOI
Liasko R, Koulish A, Pogrebniak A, Papiggioti O, Taranenko L, Leonardos I. Influence of environmental parameters on growth pattern and population structure of Carassius auratus gibelio in Eastern Ukraine. Hydrobiologia. 2011;658:317–328. doi: 10.1007/s10750-010-0502-6. DOI
Takada M, Tachihara K. Comparisons of age, growth, and maturity between male and female, and diploid and triploid individuals in Carassius auratus from Okinawajima Island, Japan. Aquat Conserv - Mar Freshwat Ecosyst. 2009;19:806–814. doi: 10.1002/aqc.1032. DOI
Rylková K, Kalous L, Šlechtová V, Bohlen J. Many branches, one root: First evidence for a monophyly of the morphologically highly diverse goldfish (Carassius auratus) Aquaculture. 2010;302:36–41. doi: 10.1016/j.aquaculture.2010.02.003. DOI
Moravec F. Checklist of the metazoan parasites of fishes of the Czech Republic and the Slovak Republic (1873–2000) Prague: Academia; 2001.
Klein J, O’Huigin C. C: MHC polymorphism and parasites. Philos Trans R Soc Lond B. 1994;346:351–358. doi: 10.1098/rstb.1994.0152. PubMed DOI
Shamsi S, Jalali B, Meshgi MA. Infection with Dactylogyrus spp. among introduced cyprinid fishes and their geographical distribution in Iran. Iran J Vet Res. 2009;10:70–74.
Wang GX, Jiang DX, Li J, Han J, Liu YT, Liu XL. Anthelmintic activity of steroidal saponins from Dioscorea zingiberensis C. H. Wright against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus) Parasitol Res. 2010;107:1365–1371. doi: 10.1007/s00436-010-2010-z. PubMed DOI
Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature. 1993;364:33–39. doi: 10.1038/364033a0. PubMed DOI
Seifertová M, Šimková A. Structure, diversity and evolutionary patterns of expressed MHC class IIB genes in chub (Squalius cephalus), a cyprinid fish species from Europe. Immunogenetics. 2011;63:167–181. doi: 10.1007/s00251-010-0495-3. PubMed DOI
Ottová E, Šimková A, Morand S. The role of major histocompatibility complex diversity in vigour of fish males (Abramis brama L.) and parasite selection. Biol J Linn Soc. 2007;90:525–538. doi: 10.1111/j.1095-8312.2007.00743.x. DOI
Kruiswijk CP, Hermsen T, Fujiki K, Dixon B, Savelkoul HFJ, Stet RJM. Analysis of genomic and expressed major histocompatibility class Ia and class II genes in a hexaploid Lake Tana African ‘large’ barb individual (Barbus intermedius) Immunogenetics. 2004;55:770–781. doi: 10.1007/s00251-003-0635-0. PubMed DOI
Rakus KL, Wiegertjes GF, Jurecka P, Walker PD, Pilarczyk A, Irnazarov I. Major histocompatibility (MH) class IIB gene polymorphism influences disease resistance of common carp (Cyprinus carpio L.) Aquaculture. 2009;288:44–50. doi: 10.1016/j.aquaculture.2008.11.016. DOI
Radtkey RR, Becker B, Miller RD, Riblet R, Case TJ. Variation and evolution of class I Mhc in sexual and parthenogenetic geckos. P Roy Soc B-Biol Sci. 1996;263:1023–1032. doi: 10.1098/rspb.1996.0151. PubMed DOI
Abdelmonem AA, Metwally MM, Hussein HS, Elsheikha HM. Gross and microscopic pathological changes associated with parasitic infection in European eel (Anguilla anguilla, Linnaeus 1758) Parasitol Res. 2006;106:463–469. PubMed
Cable J, van Oosterhout C. The impact of parasites on the life history evolution of guppies (Poecilia reticulata): the effects of host size on parasite virulence. Int J Parasitol. 2007;37:1449–1458. doi: 10.1016/j.ijpara.2007.04.013. PubMed DOI
Nowak MA, Tarczy-Hornoch K, Austyn JM. The optimal number of major histocompatibility complex molecules in an individual. P Natl Acad Sci USA. 1992;89:10896–10899. doi: 10.1073/pnas.89.22.10896. PubMed DOI PMC
Wegner KM, Reusch TBH, Kalbe M. Multiple parasites are driving major histocompatibility complex polymorphism in the wild. J Evolution Biol. 2003;16:224–232. doi: 10.1046/j.1420-9101.2003.00519.x. PubMed DOI
Hakoyama H, Iwasa Y. Coexistence of a sexual and an unisexual form stabilized by parasites. J Theor Biol. 2004;226:185–194. doi: 10.1016/j.jtbi.2003.08.012. PubMed DOI
Schlupp I. Mate choice and the Amazon Molly: how sexuality and unisexuality can coexist. J Heridity. 2010;101:S55–S61. doi: 10.1093/jhered/esq015. PubMed DOI
Janko K, Eisner J. Sperm-dependent parthenogens delay the spatial expansion of their sexual hosts. J Theor Biol. 2009;261:431–440. doi: 10.1016/j.jtbi.2009.08.012. PubMed DOI
Jokela J, Dybdahl MF, Lively CM. The maintenance of sex, clonal dynamics, and host-parasite coevolution in a mixed population of sexual and asexual snails. Am Nat. 2009;174:S43–S53. doi: 10.1086/599080. PubMed DOI
Flajšhans M. A model approach to distinguish diploid and triploid fish by means of computer – assisted image analysis. Acta Vet Brno. 1997;66:101–110. doi: 10.2754/avb199766020101. DOI
Kanagawa T. Bias and artifacts in multitemplate polymerase chain reactions (PCR) J Biosci Bioeng. 2003;96:317–323. PubMed
Lenz TL, Becker S. Simple approach to reduce PCR artefact formation leads to reliable genotyping of MHC and other highly polymorphic loci - Implications for evolutionary analysis. Gene. 2008;427:117–123. doi: 10.1016/j.gene.2008.09.013. PubMed DOI
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acid S. 1999;41:95–98.
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–2739. doi: 10.1093/molbev/msr121. PubMed DOI PMC
Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3:418–426. PubMed
Jukes TH, Cantor CR. In: Mammalian Protein Metabolism. Munro HN, editor. New York: Academic Press; 1969. Evolution of protein molecules; pp. 21–132.
Posada D, Crandall KA. Modeltest: Testing the model of DNA substitution. Bioinformatics. 1998;14:817–818. doi: 10.1093/bioinformatics/14.9.817. PubMed DOI
Swofford DL. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, Massachusetts: Sinauer Associates; 2003.
Yang ZH. PAML4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–1591. doi: 10.1093/molbev/msm088. PubMed DOI
Ergens R, Lom J. Causative agents of fish diseases. Prague: Academia; 1970. (In Czech)
Magurran AE. Ecological diversity and its measurement. London: Croom Helm; 1983.