Diversity of MHC IIB genes and parasitism in hybrids of evolutionarily divergent cyprinoid species indicate heterosis advantage

. 2021 Aug 19 ; 11 (1) : 16860. [epub] 20210819

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34413384
Odkazy

PubMed 34413384
PubMed Central PMC8376869
DOI 10.1038/s41598-021-96205-x
PII: 10.1038/s41598-021-96205-x
Knihovny.cz E-zdroje

The genes of the major histocompatibility complex (MHC) are an essential component of the vertebrate immune system and MHC genotypes may determine individual susceptibility to parasite infection. In the wild, selection that favors MHC variability can create situations in which interspecies hybrids experience a survival advantage. In a wild system of two naturally hybridizing leuciscid fish, we assessed MHC IIB genetic variability and its potential relationships to hosts' ectoparasite communities. High proportions of MHC alleles and parasites were species-specific. Strong positive selection at specific MHC codons was detected in both species and hybrids. MHC allele expression in hybrids was slightly biased towards the maternal species. Controlling for a strong seasonal effect on parasite communities, we found no clear associations between host-specific parasites and MHC alleles or MHC supertypes. Hybrids shared more MHC alleles with the more MHC-diverse parental species, but expressed intermediate numbers of MHC alleles and positively selected sites. Hybrids carried significantly fewer ectoparasites than either parent species, suggesting a hybrid advantage via potential heterosis.

Zobrazit více v PubMed

Arnold ML. Natural Hybridization and Evolution. Oxford University Press; 1997.

Stelkens R, Seehausen O. Genetic distance between species predicts novel trait expression in their hybrids. Evolution. 2009;63:884–897. doi: 10.1111/j.1558-5646.2008.00599.x. PubMed DOI

Grant PR, Grant BR. Hybridization of bird species. Science. 1992;256:193–197. doi: 10.1126/science.256.5054.193. PubMed DOI

Saino N, Villa S. Pair composition and reproductive success across a hybrid zone of carrion crows and hooded crows. Auk. 1992;109:543–555.

Good TP, Ellis JC, Annett CA, Pierotti R. Bounded hybrid superiority in an avian hybrid zone: effects of mate, diet, and habitat choice. Evolution. 2000;54:1774–1783. doi: 10.1111/j.0014-3820.2000.tb00721.x. PubMed DOI

Bartley DM, Rana K, Immink AJ. The use of inter-specific hybrids in aquaculture and fisheries. Rev. Fish Biol. Fisher. 2001;10:325–337. doi: 10.1023/A:1016691725361. DOI

Rosenfield JA, Nolasco S, Lindauer S, Sandoval C, Kodric-Brown A. The role of hybrid vigor in the replacement of Pecos pupfish by its hybrids with sheepshead minnow. Conserv. Biol. 2004;18:1589–1598. doi: 10.1111/j.1523-1739.2004.00356.x. DOI

Sun Y, et al. Comparative transcriptomic study of muscle provides new insights into the growth superiority of a novel grouper hybrid. PLoS ONE. 2016;11:e0168802. doi: 10.1371/journal.pone.0168802. PubMed DOI PMC

Scribner KT, Page KS, Bartron ML. Hybridization in freshwater fishes: A review of case studies and cytonuclear methods of biological inference. Rev. Fish Biol. Fisher. 2001;10:293–323. doi: 10.1023/A:1016642723238. DOI

Ottová E, et al. Evolution and trans-species polymorphism of MHC class IIB genes in cyprinid fish. Fish Shellfish Immun. 2005;18:199–222. doi: 10.1016/j.fsi.2004.07.004. PubMed DOI

Šimková A, et al. Does invasive Chondrostoma nasus shift the parasite community structure of endemic Parachondrostoma toxostoma in sympatric zones? Parasite. Vector. 2012;5:200. doi: 10.1186/1756-3305-5-200. PubMed DOI PMC

Klein J, OhUigin C. MHC polymorphism and parasites. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1994;346:351–358. doi: 10.1098/rstb.1994.0152. PubMed DOI

Klein J, Klein D, Figueroa F, OhUigin C, Sato A. Major histocompatibility complex genes in the study of fish phylogeny. In: Kocher TD, Stepien CA, editors. Molecular Systematic of Fishes. Academic Press; 1997. pp. 271–283.

Hughes AL, Nei M. Nucleotide substitution at major histocompatibility complex class II loci: Evidence for overdominant selection. Proc. Nat. Acad. Sci. USA. 1989;56:958–962. doi: 10.1073/pnas.86.3.958. PubMed DOI PMC

Klein J, OhUigin C. Composite origin of major histocompatibility complex genes. Curr. Opin. Genet. Dev. 1993;3:923–930. doi: 10.1016/0959-437X(93)90015-H. PubMed DOI

Hughes AL, Nei M. Models of host-parasite interactions and MHC polymorphism. Genetics. 1992;132:863–864. doi: 10.1093/genetics/132.3.863. PubMed DOI PMC

Klein J. Of HLA, tryps, and selection? An essay on coevolution of MHC and parasites. Hum. Immunol. 1991;30:247–258. doi: 10.1016/0198-8859(91)90003-R. PubMed DOI

Hughes AL, Hughes MK, Howell CY, Nei M. Natural selection at the class II major histocompatibility complex lociof mammals. Pjilos. Trans. R. Soc. Lond. B Biol. Sci. 1994;346:359–367. doi: 10.1098/rstb.1994.0153. PubMed DOI

Hedrick PW. Pathogen resistence and genetic variation at MHC loci. Evolution. 2002;56:1902–1908. doi: 10.1111/j.0014-3820.2002.tb00116.x. PubMed DOI

Nowak MA, Tarczy-Hornoch K, Austyn JM. The optimal number of major histocompatibility complex molecules in an individual. Proc. Natl. Acad. Sci. USA. 1992;89:10896–10899. doi: 10.1073/pnas.89.22.10896. PubMed DOI PMC

Wegner KM, Reusch TBH, Kalbe M. Multiple parasites are driving major histocompatibility complex polymorphism in the wild. J. Evol. Biol. 2003;16:224–232. doi: 10.1046/j.1420-9101.2003.00519.x. PubMed DOI

Eizaguirre C, Lenz TL, Traulsen A, Milinski M. Speciation accelerated and stabilized by pleiotropic major histocompatibility complex immunogenes. Ecol. Lett. 2009;12:5–12. doi: 10.1111/j.1461-0248.2008.01247.x. PubMed DOI

Nadachowska-Brzyska K, Zielinski P, Radwan J, Babiks W. Interspecific hybridization increases MHC class II diversity in two sister species of newts. Mol. Ecol. 2012;21:887–906. doi: 10.1111/j.1365-294X.2011.05347.x. PubMed DOI

Wegner KM, Eizaguirre C. New(t)s and views from hybridizing MHC genes: Introgression rather than trans-species polymorphism may shape allelic repertoires. Mol. Ecol. 2012;21:779–781. doi: 10.1111/j.1365-294X.2011.05401.x. PubMed DOI

Dudek K, Gaczorek TS, Zielinski P, Babik W. Massive introgression of major histocompatibility complex (MHC) genes in newt hybrid zones. Mol. Ecol. 2019;28:4798–4810. doi: 10.1111/mec.15254. PubMed DOI

Šimková A, Civáňová K, Gettová L, Gilles A. Genomic porosity between invasive Chondrostoma nasus and endangered endemic Parachondrostoma toxostoma (Cyprinidae): The evolution of MHC IIB genes. PLoS ONE. 2013;8:e65883. doi: 10.1371/journal.pone.0065883. PubMed DOI PMC

Zhang S, Wang Z, Wang H. Maternal immunity in fish. Dev. Comp. Immunol. 2013;39:72–78. doi: 10.1016/j.dci.2012.02.009. PubMed DOI

Šimková A, Vojtek L, Halačka K, Hyršl P, Vetešník L. The effect of hybridization on fish physiology, immunity and blood biochemistry: A case study in hybridizing Cyprinus carpio and Carassius gibelio (Cyprinidae) Aquaculture. 2015;435:381–389. doi: 10.1016/j.aquaculture.2014.10.021. DOI

Cowx IG. The biology of bream, Abramis brama (L), and its natural hybrid with roach, Rutilus rutilus (L), in the River Exe. J. Fish Biol. 1983;22:631–646. doi: 10.1111/j.1095-8649.1983.tb04223.x. DOI

Economidis PS, Wheeler A. Hybrids of Abramis brama with Scardinius erythrophthalmus and Rutilus rutilus from Lake Volvi, Macedonia, Greece. J. Fish Biol. 1989;35:295–299. doi: 10.1111/j.1095-8649.1989.tb02978.x. DOI

Toscano BJ, et al. An ecomorphological framework for the coexistence of two cyprinid fish and their hybrids in a novel environment. Biol. J. Linn. Soc. 2010;99:768–783. doi: 10.1111/j.1095-8312.2010.01383.x. DOI

Hayden B, et al. Hybridisation between two cyprinid fishes in a novel habitat: Genetics, morphology and life-history traits. BMC Evol. Biol. 2010;10:169. doi: 10.1186/1471-2148-10-169. PubMed DOI PMC

Kuparinen A, Vinni M, Teacher AGF, Kähkönen K, Merilä J. Mechanism of hybridization between bream Abramis brama and roach Rutilus rutilus in their native range. J. Fish Biol. 2014;84:237–242. doi: 10.1111/jfb.12272. PubMed DOI

Konopinski MK, Amirowicz A. Genetic composition of a population of natural common bream Abramis brama x roach Rutilus rutilus hybrids and their morphological characteristics in comparison with parent species. J. Fish Biol. 2018;92:365–385. doi: 10.1111/jfb.13506. PubMed DOI

Krasnovyd V, Vetešník L, Gettová L, Civáňová K, Šimková A. Patterns of parasite distribution in the hybrids of non-congeneric cyprinid fish species: Is asymmetry in parasite infection the result of limited coadaptation? Int. J. Parasitol. 2017;47:471–483. doi: 10.1016/j.ijpara.2017.01.003. PubMed DOI

Hayden B, et al. Trophic dynamics within a hybrid zone—interactions between an abundant cyprinid hybrid and sympatric parental species. Freshwater Biol. 2011;56:1723–1735. doi: 10.1111/j.1365-2427.2011.02604.x. DOI

Nzau Matondo B, et al. Hybridization success of three common European cyprinid species, Rutilus rutilus, Blicca bjoerkna and Abramis brama and larval resistance to stress tests. Fish. Sci. 2007;73:1137–1146. doi: 10.1111/j.1444-2906.2007.01445.x. DOI

Hayden B, McLoone P, Coyne J, Caffrey JM. Extensive hybridization between roach, Rutilus rutilus L., and common bream, Abramis brama L. Irish lakes and rivers. Biol. Environ. 2014;114B:35–39.

Eizaguirre C, et al. Parasite diversity, patterns of MHC II variation and olfactory based mate choice in diverging threespined stickleback ecotypes. Evol. Ecol. 2011;25:605–622. doi: 10.1007/s10682-010-9424-z. DOI

Hubbs CL. Hybridization between fish species in nature. Syst. Zool. 1955;4:1–20. doi: 10.2307/2411933. DOI

Rauch G, Kalbe M, Reusch TBH. Relative importance of MHC and genetic background for parasite load in a field experiment. Evol. Ecol. Res. 2006;8:373–386.

Eizaguirre C, Lenz TL, Kalbe M, Milinski M. Divergent selection on locally adapted major histocompatibility complex immune genes experimentally proven in the field. Ecol. Lett. 2012;15:723–731. doi: 10.1111/j.1461-0248.2012.01791.x. PubMed DOI PMC

Šimková A, Dávidová M, Papoušek I, Vetešník L. Does interspecies hybridization affect the host specificity of parasites in cyprinid fish? Parasite. Vector. 2013;6:95. doi: 10.1186/1756-3305-6-95. PubMed DOI PMC

Seifertová M, Jarkovský J, Šimková A. Does the parasite-mediated selection drive the MHC class IIB diversity in wild populations of European chub (Squalius cephalus)? Parasitol. Res. 2016;115:1401–1415. doi: 10.1007/s00436-015-4874-4. PubMed DOI

Nzau Matondo B, Ovidio M, Philippart JC, Poncin P. Reproductive behaviour and sexual production in the first-generation hybrids of roach Rutilus rutilus L. × common bream Abramis brama L. J. Appl. Ichthyol. 2011;27:859–867. doi: 10.1111/j.1439-0426.2010.01603.x. DOI

Graser R, OhUigin C, Vincek V, Meyer A, Klein J. Trans-species polymorphism of class II Mhc loci in danio fishes. Immunogenetics. 1996;44:36–48. doi: 10.1007/BF02602655. PubMed DOI

Figueroa F, et al. MHC class IIB gene evolution in East African cichlid fishes. Immunogenetics. 2000;51:556–575. doi: 10.1007/s002510000181. PubMed DOI

Migalska M, Sebastian A, Radwan J. Major histocompatibility complex class I diversity limits the repertoire of T cell receptors. Proc. Natl. Acad. Sci. USA. 2019;116:5021–5026. doi: 10.1073/pnas.1807864116. PubMed DOI PMC

Šimková A, Košař M, Vetešník L, Vyskočilová M. MHC genes and parasitism in Carassius gibelio, a diploid-triploid fish species with dual reproduction strategies. BMC Evol. Biol. 2013;13:122. doi: 10.1186/1471-2148-13-122. PubMed DOI PMC

Borghans JAM, Beltman JB, De Boer JB. MHC polymorphism under host-pathogen coevolution. Immunogenetics. 2004;55:732–739. doi: 10.1007/s00251-003-0630-5. PubMed DOI

Ejsmond MJ, Radwan J. Red queen processes drive positive selection on major histocompatibility complex (MHC) genes. PLoS Comput. Biol. 2015;11:e1004627. doi: 10.1371/journal.pcbi.1004627. PubMed DOI PMC

Phillips KP, et al. Immunogenetic novelty confers a selective advantage in host-pathogen coevolution. Proc. Natl. Acad. Sci. USA. 2018;115:1552–1557. doi: 10.1073/pnas.1708597115. PubMed DOI PMC

Gaigher A, Burri R, San-Jose LM, Roulin A, Fumagalli L. Lack of statistical power as a major limitation in understanding MHC-mediated immunocompetence in wild vertebrate populations. Mol. Ecol. 2019;28:5115–5132. doi: 10.1111/mec.15276. PubMed DOI

Šimková A, Ottová E, Morand S. MHC variability, life-traits and parasite diversity of European cyprinid fish. Evol. Ecol. 2006;20:465–477. doi: 10.1007/s10682-006-0014-z. DOI

Clarke B, Kirby DRS. Maintenance of histocompatibility polymorphisms. Nature. 1966;211:999–1000. doi: 10.1038/211999a0. PubMed DOI

Meglécz E, et al. SESAME (SEquence Sorter & AMplicon Explorer): Genotyping based on high throughput multiplex amplicon sequencing. Bioinformatics. 2011;27:277–278. doi: 10.1093/bioinformatics/btq641. PubMed DOI PMC

Zagalska-Neubauer M, et al. 454 sequencing reveals extreme complexity of the class II major histocompatibility complex in the collared flycatcher. BMC Evol. Biol. 2010;10:395. doi: 10.1186/1471-2148-10-395. PubMed DOI PMC

Van Erp SHM, Egberts E, Stet RJM. Characterization of class II A and B genes in a gynogenetic carp clone. Immunogenetics. 1996;44:192–202. doi: 10.1007/BF02602585. PubMed DOI

Šimková A. Major histocompatibility complex genes and parasites in cyprinid fish. Vie Milieu. 2017;67:139–148.

Klein J, et al. Nomenclature for the major histocompatibility complexes of different species: A proposal. Immunogenetics. 1990;31:217–219. PubMed

Dixon B, Nagelkerke LAJ, Sibbing FA, Egberts E, Stet RJM. Evolution of MHC class II beta chain-encoding genes in the Lake Tana barbel species flock (Barbus intermedius complex) Immunogenetics. 1996;44:419–431. PubMed

Rakus KL, et al. Major histocompatibility (MH) class IIB gene polymorphism influences disease resistance of common carp (Cyprinus carpio L) Aquaculture. 2009;288:44–50. doi: 10.1016/j.aquaculture.2008.11.016. PubMed DOI

Seifertová M, Šimková A. Structure, diversity and evolutionary patterns of expressed MHC class IIB genes in chub (Squalius cephalus), a cyprinid fish species from Europe. Immunogenetics. 2011;63:167–181. doi: 10.1007/s00251-010-0495-3. PubMed DOI

Ronquist F, et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC

Darriba D, Taboala GL, Doallo R, Posada DJ. ModelTest2: More models, new heuristics and parallel computing. Nat. Methods. 2012;9:772. doi: 10.1038/nmeth.2109. PubMed DOI PMC

Yang ZH. PAML4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007;24:1586–1591. doi: 10.1093/molbev/msm088. PubMed DOI

Doledec S, Chessel D. Co-inertia analysis—an alternative method for studying species environment relationships. Freshwater Biol. 1994;31:277–294. doi: 10.1111/j.1365-2427.1994.tb01741.x. DOI

Dray S, Chessel D, Thioulouse J. Co-inertia analysis and the linking of ecological data tables. Ecology. 2003;84:3078–3089. doi: 10.1890/03-0178. DOI

Deter J, et al. Association between the DQA MHC class II gene and puumala virus infection in Myodes glareolus, the bank vole. Infect. Genet. Evol. 2008;8:450–458. doi: 10.1016/j.meegid.2007.07.003. PubMed DOI

Evans ML, Neff BD. Major histocompatibility complex heterozygote advantage and widespread bacterial infections in populations of Chinook salmon (Oncorhynchus tshawytscha) Mol. Ecol. 2009;18:4716–4729. doi: 10.1111/j.1365-294X.2009.04374.x. PubMed DOI

Zuur A, et al. Mixed Effects Models and Extensions in Ecology With R. Springer; 2009.

Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2. Springer; 2002.

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/(2018).

Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.15.1. http://CRAN.R-project.org/package=MuMIn (2018).

Thioulouse J, Dray S. Interactive multivariate data analysis in R with the ade4 and ade4tkgui packages. J. Stat. Softw. 2007;22:1–14. doi: 10.18637/jss.v022.i05. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...