Monogeneans in intergeneric hybrids of leuciscid fish: Is parasite infection driven by hybrid heterosis, genetic incompatibilities, or host-parasite coevolutionary interactions?

. 2023 Jan 26 ; 20 (1) : 5. [epub] 20230126

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36703186

Grantová podpora
19-10088S Grantová Agentura České Republiky
MUNI/A/1488/2021 Masarykova Univerzita

Odkazy

PubMed 36703186
PubMed Central PMC9881282
DOI 10.1186/s12983-022-00481-w
PII: 10.1186/s12983-022-00481-w
Knihovny.cz E-zdroje

BACKGROUND: Several hypotheses have been proposed to explain parasite infection in parental species and their hybrids. Hybrid heterosis is generally applied to explain the advantage for F1 generations of hybrids exhibiting a lower level of parasite infection when compared to parental species. Post-F1 generations often suffer from genetic incompatibilities potentially reflected in the higher level of parasite infection when compared to parental species. However, the presence of specific parasites in an associated host is also limited by close coevolutionary genetic host-parasite associations. This study focused on monogenean parasites closely associated with two leuciscid fish species-common bream and roach-with the aim of comparing the level of monogenean infection between parental species and hybrids representing two F1 generations with different mtDNA and two backcross generations with different cyto-nuclear compositions. RESULTS: Monogenean infection in F1 generations of hybrids was lower when compared to parental species, in line with the hybrid heterosis hypothesis. Monogenean infection in backcross generations exhibited similarities with the parental species whose genes contributed more to the backcross genotype. The distribution of monogeneans associated with one or the other parental species showed the same asymmetry with a higher proportion of roach-associated monogeneans in both F1 generations and backcross generation with roach in the paternal position. A higher proportion of common bream-associated monogeneans was found in backcross generation with common bream in the paternal position. CONCLUSIONS: Our study indicated that cyto-nuclear incompatibilities in hybrids do not induce higher monogenean infection in backcross generations when compared to parental species. However, as backcross hybrids with a higher proportion of the genes of one parental taxon also exhibited high level of this parental taxon-associated parasites, host-parasite coevolutionary interactions seem to play an obvious role in determining the level of infection of host-specific monogeneans in hybrids.

Zobrazit více v PubMed

Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, et al. Hybridization and speciation. J Evol Biol. 2013;26:229–246. doi: 10.1111/j.1420-9101.2012.02599.x. PubMed DOI

Scribner KT, Page KS, Bartron ML. Hybridization in freshwater fishes: a review of case studies and cytonuclear methods of biological inference. Rev Fish Biol Fisher. 2001;10:293–323. doi: 10.1023/A:1016642723238. DOI

Edmands S. Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution. 1999;53(6):1757–1768. doi: 10.2307/2640438. PubMed DOI

Harrison JS, Burton RS. Tracing hybrid incompatibilities to single amino acid substitutions. Mol Biol Evol. 2006;23(3):559–564. doi: 10.1093/molbev/msj058. PubMed DOI

Ellison CK, Burton RS. Interpopulation hybrid breakdown maps to the mitochondrial genome. Evolution. 2008;62(3):631–638. doi: 10.1111/j.1558-5646.2007.00305.x. PubMed DOI

Burton RS, Pereira RJ, Barreto FS. Cytonuclear genomic interactions and hybrid breakdown. Annu Rev Ecol Evol Syst. 2013;44(1):281–302. doi: 10.1146/annurev-ecolsys-110512-135758. DOI

Šimková A, Dávidová M, Papoušek I, Vetešník L. Does interspecies hybridization affect the host specificity of parasites in cyprinid fish? Parasite Vector. 2013;6:95. doi: 10.1186/1756-3305-6-95. PubMed DOI PMC

Stelkens RB, Schmid C, Seehausen O. Hybrid breakdown in cichlid fish. PLoS ONE. 2015;10(5):e0127207. doi: 10.1371/journal.pone.0127207. PubMed DOI PMC

Renaut S, Bernatchez L. Transcriptome-wide signature of hybrid breakdown associated with intrinsic reproductive isolation in lake whitefish species pairs (Coregonus spp.) Salmonidae. Heredity. 2011;106:1003–1011. doi: 10.1038/hdy.2010.149. PubMed DOI PMC

Burton RS. Hybrid breakdown in physiological response a mechanistic approach. Evolution. 1990;44:1806–1813. doi: 10.2307/2409509. PubMed DOI

Burton RS. Hybrid breakdown in development time in the copepod Tigriopus californicus. Evolution. 1990;44:1814–1822. doi: 10.2307/2409510. PubMed DOI

Edmands S, Northrup SL, Hwang AS. Maladapted gene complexes within populations of the intertidal copepod Tigriopus californicus? Evolution. 2009;63(8):2184–2192. doi: 10.1111/j.1558-5646.2009.00689.x. PubMed DOI

Barreto FS, Pereira RJ, Burton RS. Hybrid dysfunction and physiological compensation in gene expression. Mol Biol Evol. 2014;32(3):613–622. doi: 10.1093/molbev/msu321. PubMed DOI

Renaut S, Nolte AW, Bernatchez L. Gene expression divergence and hybrid misexpression between lake whitefish species pairs (Coregonus spp. Salmonidae) Mol Biol Evol. 2009;26(4):925–936. doi: 10.1093/molbev/msp017. PubMed DOI

Baird SJE, Ribas A, Macholán M, Albrecht T, Piálek J, de Bellocq JG. Where are the wormy mice? A reexamination of hybrid parasitism in the European house mouse hybrid zone. Evolution. 2012;66(9):2757–2772. doi: 10.1111/j.1558-5646.2012.01633.x. PubMed DOI

Schönhuth S, Vukić J, Šanda R, Yang L, Mayden RL. Phylogenetic relationships and classification of the Holarctic family Leuciscidae (Cypriniformes: Cyprinoidei) Mol Phyl Evol. 2018;127:781–799. doi: 10.1016/j.ympev.2018.06.026. PubMed DOI

Dobzhansky T. Genetics and the origin of species. New York: Columbia University Press; 1937.

Muller HJ. Isolating mechanisms, evolution, and temperature. Biol Symp. 1942;6:71–125.

Ellison CK, Burton RS. Genotype-dependent variation of mitochondrial transcriptional profiles in interpopulation hybrids. Proc Natl A Sci. 2008;105(41):15831–15836. doi: 10.1073/pnas.0804253105. PubMed DOI PMC

Burton RS. The role of mitonuclear incompatibilities in allopatric speciation. Cell Mol Life Sci. 2022;79(2):103. doi: 10.1007/s00018-021-04059-3. PubMed DOI PMC

Rand DM, Haney RA, Fry AJ. Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol. 2004;19(12):645–653. doi: 10.1016/j.tree.2004.10.003. PubMed DOI

Han KL, Barreto FS. Pervasive mitonuclear coadaptation underlies fast development at interpopulation hybrids of a marine crustacean. Genome Biol Evol. 2021;13(3):evab004. doi: 10.1093/gbe/evab004. PubMed DOI PMC

Bolnick DI, Near TJ. Tempo of hybrid inviability in centrarchid fishes (Teleostei: Centrarchidae) Evolution. 2005;59(8):1754–1767. PubMed

Hurt CR, Farzin M, Hedrick PW. Premating, not postmating, barriers drive genetic dynamics in experimental hybrid populations of the endangered sonoran topminnow. Genetics. 2005;171(2):655–662. doi: 10.1534/genetics.105.045591. PubMed DOI PMC

Nevado B, Fazalova V, Backeljau T, Hanssens M, Verheyen E. Repeated unidirectional introgression of nuclear and mitochondrial DNA between four congeneric Tanganyikan cichlids. Mol Biol Evol. 2011;28(8):2253–2267. doi: 10.1093/molbev/msr043. PubMed DOI

Šimková A, Civáňová K, Vetešník L. Heterosis versus breakdown in fish hybrids revealed by one-parental species-associated viral infection. Aquaculture. 2022;546:737406. doi: 10.1016/j.aquaculture.2021.737406. DOI

Krasnovyd V, Vetešník L, Gettová L, Civáňová K, Šimková A. Patterns of parasite distribution in the hybrids of non-congeneric cyprinid fish species: Is asymmetry in parasite infection the result of limited coadaptation? Int J Parasitol. 2017;47(8):471–483. doi: 10.1016/j.ijpara.2017.01.003. PubMed DOI

Krasnovyd V, Vetešník L, Šimková A. Distribution of host-specific parasites in hybrids of phylogenetically related fish: the effects of genotype frequency and maternal ancestry? Parasite Vector. 2020;13:402. doi: 10.1186/s13071-020-04271-3. PubMed DOI PMC

Arnold ML. Natural hybridization and evolution. Oxford: Oxford University Press; 1997.

Fritz RS, Nichols-Orians CM, Brunsfeld SJ. Interspecific hybridization of plants and resistance to herbivores: hypotheses, genetics, and variable responses in a diverse herbivore community. Oecologia. 1994;97:106–117. doi: 10.1007/BF00317914. PubMed DOI

Dupont F, Crivelli AJ. Do parasites confer a disadvantage to hybrids? Oecologia. 1988;75:587–592. doi: 10.1007/BF00776424. PubMed DOI

Wolinska J, Lively CM, Spaak P. Parasites in hybridizing communities: the Red Queen again? Trends Parasitol. 2007;24:121–126. doi: 10.1016/j.pt.2007.11.010. PubMed DOI

Šimková A, Verneau O, Gelnar M, Morand S. Specificity and specialization of congeneric monogeneans parasitizing cyprinid fish. Evolution. 2006;60(5):1023–1037. PubMed

Kuchta R, Řehulková E, Francová K, Scholz T, Morand S, Šimková A. Diversity of monogeneans and tapeworms in cypriniform fishes across two continents. Int J Parasitol. 2020;50(10–11):771–786. doi: 10.1016/j.ijpara.2020.06.005. PubMed DOI

Lively CM, Apanius V. Genetic diversity in host-parasite interactions. In: Grenfell BT, Dobson AP, editors. Ecology of infectious diseases in natural populations. Cambridge University Press; 1995. pp. 421–449.

Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet. 2002;32(4):569–577. doi: 10.1038/ng1202-569. PubMed DOI

Fritz RS, Moulia C, Newcombe G. Resistance of hybrid plants and animals to herbivores, pathogens, and parasites. Annu Rev Ecol Syst. 1999;30:565–591. doi: 10.1146/annurev.ecolsys.30.1.565. DOI

Buchmann K, Lindenström T. Interactions between monogenean parasites and their fish hosts. Int J Parasitol. 2002;32:309–319. doi: 10.1016/S0020-7519(01)00332-0. PubMed DOI

Moulia C, Joly P. Parasitism and hybrid zones. In: Thomas F, Guégan JF, Renaud F, editors. Ecology and evolution of parasitism. Oxford University Press; 2008. pp. 69–82.

Sage RD, Heyneman D, Lim KC, Wilson AC. Wormy mice in a hybrid zone. Nature. 1986;324:60–63. doi: 10.1038/324060a0. PubMed DOI

Moulia C, Aussel JP, Bonhomme F, Boursot P, Nielsen JT, Renaud F. Wormy mice in a hybrid zone: a genetic control of susceptibility to parasite infection. J Evol Biol. 1991;4:679–687. doi: 10.1046/j.1420-9101.1991.4040679.x. DOI

Jurajda P, Ondračková M, Reichard M. Managed flooding as a tool for supporting natural fish reproduction in man-made lentic water bodies. Fish Manag Ecol. 2004;11:237–242. doi: 10.1111/j.1365-2400.2004.00398.x. DOI

Moravec F. Checklist of metazoan parasites of fishes of the Czech Republic and the Slovak Republic (1873–2000) Prague: Academia Press; 2001.

Šimková A, Gettová L, Civáňová K, Seifertová M, Janáč M, Vetešník L. Diversity of MHC IIB genes and parasitism in hybrids of evolutionarily divergent cyprinoid species indicate heterosis advantage. Sci Rep. 2021;11:16860. doi: 10.1038/s41598-021-96205-x. PubMed DOI PMC

Nzau Matondo BN, Ovidio M, Philippart J, Poncin P. Sexual maturity, reproductive behaviour and fertility in the first-generation hybrids of Blicca bjoerkna L. x Abramis brama L. Cybium. 2008;32:286–289.

Kuparinen A, Vinni M, Teacher AG, Kähkönen K, Merilä J. Mechanism of hybridization between bream Abramis brama and roach Rutilus rutilus in their native range. J Fish Biol. 2014;84(1):237–242. doi: 10.1111/jfb.12272. PubMed DOI

Nilsson PA, Hulthén K, Chapman BB, Hansson L, Brodersen J, Baktoft H, et al. Species integrity enhanced by a predation cost to hybrids in the wild. Biol Lett. 2017;13(7):20170208. doi: 10.1098/rsbl.2017.0208. PubMed DOI PMC

Hayden B, Pulcini D, Kelly-Quinn M, O’Grady M, Caffrey J, McGrath A, Mariani S. Hybridisation between two cyprinid fishes in a novel habitat: genetics, morphology and life-history traits. BMC Evol Biol. 2010;10:169. doi: 10.1186/1471-2148-10-169. PubMed DOI PMC

Toscano BJ, Pulcini D, Hayden B, Russo T, Kelly-Quinn M, Mariani S. An ecomorphological framework for the coexistence of two cyprinid fish and their hybrids in a novel environment. Biol J Linn Soc. 2010;99:768–783. doi: 10.1111/j.1095-8312.2010.01383.x. DOI

Konopinski MK, Amirowicz A. Genetic composition of a population of natural common bream Abramis brama x roach Rutilus rutilus hybrids and their morphological characteristics in comparison with parent species. J Fish Biol. 2018;92:365–385. doi: 10.1111/jfb.13506. PubMed DOI

Nzau Matondo B, Ovidio M, Poncin P, Kakesa TA, Wamuini LS, Philippart JC. Hybridization success of three common European cyprinid species, Rutilus rutilus, Blicca bjoerkna and Abramis brama and larval resistance to stress tests. Fish Sci. 2007;73:1137–1146. doi: 10.1111/j.1444-2906.2007.01445.x. DOI

Hayden B, Massa-Gallucci A, Caffrey J, Harrod C, Mariani S, O’Grady M, Kelly-Quinn M. Trophic dynamics within a hybrid zone—interactions between an abundant cyprinid hybrid and sympatric parental species. Freshw Biol. 2011;56:1723–1735. doi: 10.1111/j.1365-2427.2011.02604.x. DOI

Wolinska J, Bittner K, Ebert D, Spaak P. The coexistence of hybrid and parental Daphnia: the role of parasites. Proc R Soc Lond B. 2006;273:1977–1983. PubMed PMC

Theodosopoulos AN, Hund AK, Taylor SA. Parasites and host species barriers in animal hybrid zones. Trends Ecol Evol. 2019;34(1):19–30. doi: 10.1016/j.tree.2018.09.011. PubMed DOI

Pärssinen V, Hulthén K, Brönmark C, Skov C, Brodersen J, Barktoft H, Chapman BB, Hansson L-A, Nilsson PA. Maladaptive migration behavior in hybrids links to predator-mediated ecological selection. J Anim Ecol. 2020;89:2596–2604. doi: 10.1111/1365-2656.13308. PubMed DOI PMC

Stolbunova VV, Pavlova VV, Kodukhova YV. Asymmetric hybridization of roach Rutilus rutilus and common bream Abramis brama in controlled backcrosses: genetic and morphological patterns. Biosyst Divers. 2020;28(4):376–383. doi: 10.15421/012048. DOI

Šimková A, Civáňová K, Gettová L, Gilles A. Genomic porosity between invasive Chondrostoma nasus and endangered endemic Parachondrostoma toxostoma (Cyprinidae): the evolution of MHC IIB genes. PLoS ONE. 2013;8(6):e65883. doi: 10.1371/journal.pone.0065883. PubMed DOI PMC

Linhart O, Rodina M, Bastl J, Cosson J. Urinary bladder, ionic composition of seminal fluid and urine with characterization of sperm motility in tench (Tinca tinca L.) J Appl Ichthyol. 2003;19:177–181. doi: 10.1046/j.1439-0426.2003.00470.x. DOI

Řehulková E, Seifertová M, Přikrylová I, Francová K. Monogenea. In: Scholz T, Vanhove MPM, Smit N, Jayasundera Z, Gelnar M, editors. A Guide to the parasites of African freshwater fishes. Brussels: AbcTaxa; 2018. pp. 185–243.

Bush AO, Lafferty KD, Lotzs JM, Shostakll AW. Parasitology meets ecology on its own terms: Margolis et al. revised. J Parasitol. 1997;83:575–583. doi: 10.2307/3284227. PubMed DOI

Hammer O, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Paleontol Electron. 2001;4(1):9.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...