Identification of Lactobacillus proteins with different recognition patterns between immune rabbit sera and nonimmune mice or human sera
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
26861940
PubMed Central
PMC4748627
DOI
10.1186/s12866-016-0631-9
PII: 10.1186/s12866-016-0631-9
Knihovny.cz E-zdroje
- MeSH
- antisérum analýza imunologie MeSH
- bakteriální proteiny analýza imunologie MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- králíci MeSH
- Lactobacillus chemie klasifikace imunologie MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- antisérum MeSH
- bakteriální proteiny MeSH
BACKGROUND: The genus Lactobacillus belongs to a large heterogeneous group of low G + C Gram-positive anaerobic bacteria, which are frequently used as probiotics. The health-beneficial effects, in particular the immunomodulation effect, of probiotics depend on the strain and dose used. Strain variations may be related to diversity of the cell surface architecture of bacteria and the ability to express specific antigens or secrete compounds. The use of Lactobacillus as probiotic requires a comprehensive understanding of its effect on host immune system. To evaluate the potential immunoreactive properties of proteins isolated from four Lactobacillus strains: L. johnsonii 142 and L. johnsonii 151, L. rhamnosus LOCK 0900 and L. casei LOCK 0919, the polyclonal sera obtained from mouse and human have been tested as well as with sera from rabbits immunized with whole lactobacilli cells. RESULTS: The reactivity of isolated proteins detected by SDS-PAGE and Western blotting was heterogeneous and varied between different serum samples. The proteins with the highest immunoreactivity were isolated, purified and sequenced, in particular the fractions were identified as phosphoglycerate kinase (L. johnsonii 142), glyceraldehyde 3-phosphate dehydrogenase (L. johnosnii 142, L. rhamnosus LOCK 0900), hypothetic protein JDM1_1307 (L. johnsonii 151) and fructose/tagatose-bisphosphate-aldolase (L. casei LOCK 0919). CONCLUSION: The different prevalence of reactions against tested antigens in rabbit, mouse and human sera may indicate significant differences in immune system and commensal cross-talk in these groups. The identification of immunoreactive lactobacilli proteins opens the possibility to use them as an antigens for development of vaccines.
Zobrazit více v PubMed
Beganović J, Frece J, Kos B, Pavunc AL, Habjanič K, Sušković J. Functionality of the S-layer protein from the probiotic strain Lactobacillus helveticus M92. Antonie Van Leeuwenhoek. 2011;100:43–53. doi: 10.1007/s10482-011-9563-4. PubMed DOI
Górska S, Jarząb A, Gamian A. Probiotic bacteria in the human gastrointestinal tract as a factor stimulating the immune system. Postepy Hig Med Dosw. 2009;63:653–67. PubMed
Martínez MG, Acosta MP, Candurra NA, Ruzal SM. S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection. Biochem Biophys Res Commun. 2012;422:590–95. doi: 10.1016/j.bbrc.2012.05.031. PubMed DOI PMC
Matijašić BB, Narat M, Peternel MZ, Rogelj I. Ability of Lactobacillus gasseri K7 to inhibit Escherichia coli adhesion in vitro on Caco-2 cells and ex vivo on pigs’ jejunal tissue. Int J Food Microbiol. 2006;107:92–6. doi: 10.1016/j.ijfoodmicro.2005.08.017. PubMed DOI
Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterol. 2007;132:562–75. doi: 10.1053/j.gastro.2006.11.022. PubMed DOI PMC
Taverniti V, Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept) Genes Nutr. 2011;6:261–74. doi: 10.1007/s12263-011-0218-x. PubMed DOI PMC
Båth K, Roos S, Wall T, Jonsson H. The cell surface of Lactobacillus reuteri ATCC 55730 highlighted by identification of 126 extracellular proteins from the genome sequence. FEMS Microbiol Lett. 2008;253:75–82. doi: 10.1016/j.femsle.2005.09.042. PubMed DOI
Driessen AJ, Nouwen N. Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem. 2008;77:643–67. doi: 10.1146/annurev.biochem.77.061606.160747. PubMed DOI
Sánchez B, Chaignepain S, Schmitter JM, Urdac MC. A method for the identification of proteins secreted by lactic acid bacteria grown in complex media. FEMS Microbiol Lett. 2009;295:226–9. doi: 10.1111/j.1574-6968.2009.01599.x. PubMed DOI
Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ, et al. The extracellular biology of the lactobacilli. FEMS Microbiol Rev. 2010;34:199–230. doi: 10.1111/j.1574-6976.2009.00208.x. PubMed DOI
Remus DM, Bongers RS, Meijerink M, Fusetti F, Poolman B, de Vos P, et al. Impact of Lactobacillus plantarum sortase on target protein sorting, gastrointestinal persistence, and host immune response modulation. J Bacteriol. 2013;195:502–9. doi: 10.1128/JB.01321-12. PubMed DOI PMC
Chen X, Chen Y, Li X, Chen N, Fang W. Characterization of surface layer proteins in Lactobacillus crispatus isolate ZJ001. J Microbiol Biotechnol. 2009;19:1176–83. doi: 10.4014/jmb.0902.0096. PubMed DOI
Khaleghi M, Kermanshahi RK. Effect of environmental stresses on s-layer production in Lactobacillus acidophilus ATCC 4356. In: Petre M, editor. Advances in Applied Biotechnology. 2012.
Rojas M, Ascencio F, Conway PL. Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl Environ Microbiol. 2002;68:2330–6. doi: 10.1128/AEM.68.5.2330-2336.2002. PubMed DOI PMC
Avall-Jaaskelainen S, Palva A. Lactobacillus surface layers and their applications. FEMS Microbiol Rev. 2005;29:511–29. doi: 10.1016/j.fmrre.2005.04.003. PubMed DOI
Bernet MF, Brassart D, Neeser JR, Servin AL. Lactobacillus acidophilus LA1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut. 1994;35:483–9. doi: 10.1136/gut.35.4.483. PubMed DOI PMC
Candela M, Perna F, Carnevali P, Vitali B, Ciati R, Gionchetti P, et al. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int J Food Microbiol. 2008;125:286–92. doi: 10.1016/j.ijfoodmicro.2008.04.012. PubMed DOI
Carasi P, Trejo FM, Pérez PF, De Antoni GL, De los Angeles Serradell M. Surface proteins from Lactobacillus kefir antagonize in vitro cytotoxic effect of Clostridium difficile toxins. Anaerobe. 2012;18:135–42. doi: 10.1016/j.anaerobe.2011.11.002. PubMed DOI
Coconnier MH, Bernet MF, Kernéis S, Chauvière G, Fourniat J, Servin AL. Inhibition of adhesion of enteroinvasive pathogens to human intestinal Caco-2 cells by Lactobacillus acidophilus strain LB decreases bacterial invasion. FEMS Microbiol Lett. 1993;110:299–305. doi: 10.1111/j.1574-6968.1993.tb06339.x. PubMed DOI
Granato D, Bergonzelli GE, Pridmore RD, Marvin L, Rouvet M, Corthésy-Theulaz IE. Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun. 2004;72:2160–69. doi: 10.1128/IAI.72.4.2160-2169.2004. PubMed DOI PMC
Reunanen J, von Ossowskia I, Hendrick APA, Palva A, de Vos WM. Characterization of the SpaCBA Pilus Fibers in the Probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol. 2012;78:2337–44. doi: 10.1128/AEM.07047-11. PubMed DOI PMC
Neville BA, Forde BM, Claesson MJ, Darby T, Coghlan A, Nally K, et al. Characterization of pro-inflammatory flagellin proteins produced by Lactobacillus ruminis and related motile lactobacilli. PloS. 2012;7:40592. doi: 10.1371/journal.pone.0040592. PubMed DOI PMC
Sanchez B, Urdaci MC, Margolles A. Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa–bacteria interactions. Microbiology. 2010;156:3232–42. doi: 10.1099/mic.0.044057-0. PubMed DOI
Buck BL, Altermann E, Svingerud T, Klaenhammer TR. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol. 2005;71:8344–51. doi: 10.1128/AEM.71.12.8344-8351.2005. PubMed DOI PMC
Boekhorst J, Helmer Q, Kleerebezem M, Siezen RJ. Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiology. 2006;152:273–80. doi: 10.1099/mic.0.28415-0. PubMed DOI
Van Tassell ML, Miller MJ. Lactobacillus adhesion to mucus. Nutrients. 2011;3:613–36. doi: 10.3390/nu3050613. PubMed DOI PMC
Macías-Rodríquez ME, Zagorec M, Ascencio F, Vázquez-Juárez R, Rojas M. Lactobacillus fermentum BCS87 expresses mucus- and mucin-binding proteins on the cell surface. J Appl Microbiol. 2009;107:1866–74. doi: 10.1111/j.1365-2672.2009.04368.x. PubMed DOI
von Ossowski I, Satokari R, Reunanen J, Lebeer S, De Keersmaecker SCJ, Vanderleyden J, et al. Functional characterization of a mucus-specific LPXTG surface adhesin from probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol. 2011;77:4465–72. doi: 10.1128/AEM.02497-10. PubMed DOI PMC
Munoz-Provencio D, Rodríguez-Díaz J, Collado MC, Langella P, Bermúdez-Humarán LG, Monedero V. Functional analysis of the Lactobacillus casei BL23 sortases. Appl Environ Microbiol. 2012;78:8684–8693. doi: 10.1128/AEM.02287-12. PubMed DOI PMC
Lebeer S, Vanderleyden J, De Keersmaecker SC. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev. 2008;72:728–64. doi: 10.1128/MMBR.00017-08. PubMed DOI PMC
Lebeer S, Vanderleyden J, De Keersmaecker SC. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbial. 2010;8:171–84. doi: 10.1038/nrmicro2297. PubMed DOI
Sengupta R, Altermann E, Anderson RC, McNabb WC, Moughan PJ, Roy NC. The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediators Inflamm. 2013; doi:10.1155/2013/237921. PubMed PMC
Górska S, Jachymek W, Rybka J, Strus M, Heczko PB, Gamian A. Structural and immunochemical studies of neutral exopolysaccharide produced by Lactobacillus johnsonii 142. Carbohydr Res. 2010;345:108–14. doi: 10.1016/j.carres.2009.09.015. PubMed DOI
Górska-Frączek S, Sandström C, Kenne L, Paściak M, Brzozowska E, Strus M, et al. The structure and immunoreactivity of exopolysaccharide isolated from Lactobacillus johnsonii strain 151. Carbohydr Res. 2013;378:148–53. doi: 10.1016/j.carres.2013.05.012. PubMed DOI
Konstantinov SR, Smidt H, de Vos WM, Bruijns SCM, Singh SK, Valence F, et al. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci U S A. 2008;105:19474–79. doi: 10.1073/pnas.0810305105. PubMed DOI PMC
Bergonzellii GE, Granato D, Pridimore RD, Marvin-Guy LF, Donnicola D, Corthesy-Theulaz IE. GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect Immun. 2006;74:425–34. doi: 10.1128/IAI.74.1.425-434.2006. PubMed DOI PMC
Choi CH, Kim TI, Lee SK, Yang KM, Kim WH. Effect of Lactobacillus GG and conditioned media on IL-1beta-induced IL-8 production in Caco-2 cells. Scand J Gastroenterol. 2008;43:938–47. doi: 10.1080/00365520801965373. PubMed DOI
Maassen CBM, Boersma WJA, van Holten-Neelen C, Claassen E, Laman JD. Growth phase of orally administered Lactobacillus strains differentially affects IgG1/IgG2a ratio for soluble antigens: implications for vaccine development. Vaccine. 2003;21:2751–57. doi: 10.1016/S0264-410X(03)00220-2. PubMed DOI
Prangli AL, Utt M, Talja I, Sepp E, Mikelsaar M, Rajasalu T, et al. Antigenic proteins of Lactobacillus acidophilus that are recognised by serum IgG antibodies in children with type 1 diabetes and coeliac disease. Pediatr Allergy Immunol. 2010;21:772–79. doi: 10.1111/j.1399-3038.2009.00904.x. PubMed DOI
Henderson B, Martin A. Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun. 2011;79:3476–91. doi: 10.1128/IAI.00179-11. PubMed DOI PMC
Katakura Y, Sano R, Hashimoto T, Ninomiya K, Shioya S. Lactic acid bacteria display on the cell surface cytosolic proteins that recognize yeast mannan. Appl Microbiol Biotechnol. 2010;86:319–26. doi: 10.1007/s00253-009-2295-y. PubMed DOI
Mangiapane E, Lamberti C, Pessione A, Ceruti P, Novelli F, Galano E, et al. An integrated proteomic and physiological approach to understand the adhesion mechanism of the probiotic Lactobacillus reuteri Lb2 BM DSM 16143. JIOMICS. 2013;3:145–56.
Kinoshita H, Wakahara N, Watanabe M, Kawasaki T, Matsuo H, Kawai Y, et al. Cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Lactobacillus plantarum LA 318 recognizes human A and B blood group antigens. Res Microbiol. 2008;159:685–91. doi: 10.1016/j.resmic.2008.07.005. PubMed DOI
Antikainen J, Kuparinen V, Lahteenmaki K, Korhonen TK.pH-dependent association of enolase and glyceraldehyde-3-phosphate dehydrogenase of Lactobacillus crispatus with the cell wall and lipoteichoic acids. J Bacteriol. 2007;189:4539–4543. PubMed PMC
Hurmalainen V, Edelman S, Antikainen J, Baumann M, Lahteenmaki K, Korhonen TK. Extracellular proteins of Lactobacillus crispatus enhance activation of human plasminogen. Microbiology. 2007;153:1112–22. doi: 10.1099/mic.0.2006/000901-0. PubMed DOI
Kinoshita H, Uchida H, Kawai Y, Kawasaki T, Wakahara N, Matuo H, et al. Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. J Appl Microbiol. 2008;104:1667–74. doi: 10.1111/j.1365-2672.2007.03679.x. PubMed DOI
Sánchez B, Schmitter JM, Urdaci MC. Identification of novel proteins secreted by Lactobacillus plantarum that bind to mucin and fibronectin. J Mol Microbiol Biotechnol. 2009;17:158–62. doi: 10.1159/000233579. PubMed DOI
Sanchez B, Schmitter JM, Urdaci MC. Identification of novel proteins secreted by Lactobacillus rhamnosus GG grown in de mann rogosa sharpe broth. Lett Apl Microbiol. 2009;48:618–622. doi: 10.1111/j.1472-765X.2009.02579.x. PubMed DOI
Madureira P, Baptista M, Vieira M, Magalhães V, Camelo A, Oliveira L, et al. Streptococcus agalactiae GAPDH is a virulence-associated immunomodulatory protein. J Immunol. 2007;178:1379–87. doi: 10.4049/jimmunol.178.3.1379. PubMed DOI
Ling E, Feldman G, Portnoi M, Dagan R, Overweg K, Mulholland F, et al. Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin Exp Immunol. 2004;138:290–98. doi: 10.1111/j.1365-2249.2004.02628.x. PubMed DOI PMC
Mori N, Singer-Sam J, Riggs AD. Evolutionary conservation of the substrate-binding cleft of phosphoglycerate kinases. FEBS Lett. 1986;204:313–17. doi: 10.1016/0014-5793(86)80835-3. PubMed DOI
Bourniquel AA, Mollet B. Purification and characterization of the 3-phosphoglycerate kinase from the thermophile Lactobacillus delbrueckii subsp. lactis. Int Dairy J. 2002;12:723–28. doi: 10.1016/S0958-6946(02)00069-9. DOI
Hughes MJG, Moore JC, Lane JD, Wilson R, Pribul PK, Younes ZN, et al. Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immunol. 2002;70:1254–59. doi: 10.1128/IAI.70.3.1254-1259.2002. PubMed DOI PMC
Nagpal R, Kumar A, Kumar M, Behare PV, Jain S, Yadav H. Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol Lett. 2012;334:1–15. doi: 10.1111/j.1574-6968.2012.02593.x. PubMed DOI
Isolauri E, Joensuu J, Suomalainen H, Luomala M, Vesikari T. Improved immunogenicity of oral D x RRV reassortant rotavirus vaccine by Lactobacillus casei GG. Vaccine. 1995;13:310–12. doi: 10.1016/0264-410X(95)93319-5. PubMed DOI
de Vrese M, Rautenberg P, Laue C, Koopmans M, Herremans T, Schrezenmeir J. Probiotic bacteria stimulate virus-specific neutralizing antibodies following a booster polio vaccination. Eur J Nutr. 2005;44:406–13. doi: 10.1007/s00394-004-0541-8. PubMed DOI
Paineau D, Carcano D, Leyer G, Darquy S, Alyanakian MA, Simoneau G, et al. Effects of seven potential probiotic strains on specific immune responses in healthy adults: a double-blind, randomized, controlled trial. FEMS Immunol Med Microbiol. 2008;53:107–13. doi: 10.1111/j.1574-695X.2008.00413.x. PubMed DOI
Kobayashi N, Saito T, Uematsu T, Kishi K, Toba M, Kohda N, et al. Oral administration of heat-killed Lactobacillus pentosus strain b240 augments protection against influenza virus infection in mice. Int Immunopharmacol. 2011;11:199–203. doi: 10.1016/j.intimp.2010.11.019. PubMed DOI
Khang YH, Park HY, Jeong YS, Kim JA, Kim YH. Recombinant S-layer proteins of Lactobacillus brevis mediating antibody adhesion to calf intestine alleviated neonatal diarrhea syndrome. J Microbiol Biotechnol. 2009;19:511–19. doi: 10.4014/jmb.0805.325. PubMed DOI
Heikki Vilen H, Hynönen U, Badelt-Lichtblau H, Ilk N, Jääskeläinen P, Torkkeli M, et al. Surface location of individual residues of SlpA provides insight into the Lactobacillus brevis S-Layer. J Bacteriol. 2009;191:3339–49. doi: 10.1128/JB.01782-08. PubMed DOI PMC
Åvall-Jääskeläinen S, Kylä-Nikkilä K, Kahala M, Miikkulainen-Lahti T, Palva A. Surface display of foreign epitopes on the Lactobacillus brevis S-layer. Appl Environ Microbiol. 2002;68:5943–51. doi: 10.1128/AEM.68.12.5943-5951.2002. PubMed DOI PMC
Aleksandrzak-Piekarczyk T, Koryszewska-Bagińska A, Bardowski J. Genome sequence of the probiotic strain Lactobacillus rhamnosus (formerly Lactobacillus casei) LOCK900. Genome Announc. 2013 PubMed PMC
Aleksandrzak-Piekarczyk T, Koryszewska-Bagińska A, Bardowski J. Complete genome sequence of the probiotic strain Lactobacillus casei (formerly Lactobacillus paracasei) LOCK919. Genome Announc. 2013 PubMed PMC
Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K, Cleenwerck I, et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol. 2007;57:2777–89. doi: 10.1099/ijs.0.64711-0. PubMed DOI
Heilmann C, Gerke C, Perdreau-Remington F, Götz F. Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun. 1996;64:277–82. PubMed PMC
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75. PubMed
Górska S, Schwarzer M, Jachymek W, Srutkova D, Brzozowska E, Kozakova H, et al. Distinct immunomodulation of bone marrow-derived dendritic cell responses to Lactobacillus plantarum WCFS1 by two different polysaccharides isolated from Lactobacillus rhamnosus LOCK 0900. Appl Environ Microbiol. 2014;80:6506–16. doi: 10.1128/AEM.02104-14. PubMed DOI PMC
Laemlli UK. Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature. 1970;227:680–85. doi: 10.1038/227680a0. PubMed DOI