Distinct immunomodulation of bone marrow-derived dendritic cell responses to Lactobacillus plantarum WCFS1 by two different polysaccharides isolated from Lactobacillus rhamnosus LOCK 0900

. 2014 Oct ; 80 (20) : 6506-16. [epub] 20140808

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25107979

The structures of polysaccharides (PS) isolated from Lactobacillus rhamnosus LOCK 0900 and results from stimulation of mouse bone marrow-derived dendritic cells (BM-DC) and human embryonal kidney (HEK293) cells stably transfected with Toll-like receptors (TLR) upon exposure to these antigens were studied. L. rhamnosus LOCK 0900 produces PS that differ greatly in their structure. The polymer L900/2, with a high average molecular mass of 830 kDa, is a branched heteropolysaccharide with a unique repeating unit consisting of seven sugar residues and pyruvic acid, whereas L900/3 has a low average molecular mass of 18 kDa and contains a pentasaccharide repeating unit and phosphorus. Furthermore, we found that both described PS neither induce cytokine production and maturation of mouse BM-DC nor induce signaling through TLR2/TLR4 receptors. However, they differ profoundly in their abilities to modulate the BM-DC immune response to the well-characterized human isolate Lactobacillus plantarum WCFS1. Exposure to L900/2 enhanced interleukin-10 (IL-10) production induced by L. plantarum WCFS1, while in contrast, L900/3 enhanced the production of IL-12p70. We conclude that PS, probably due to their chemical features, are able to modulate the immune responses to third-party antigens. The ability to induce regulatory IL-10 by L900/2 opens up the possibility to use this PS in therapy of inflammatory conditions, such as inflammatory bowel disease, whereas L900/3 might be useful in reverting the antigen-dependent Th2-skewed immune responses in allergies.

Zobrazit více v PubMed

Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK. 2011. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol. 19:349–359. 10.1016/j.tim.2011.05.006 PubMed DOI

Tlaskalová-Hogenová H, Stěpánková R, Kozáková H, Hudcovic T, Vannucci L, Tučková L, Rossmann P, Hrnčíř T, Kverka M, Zákostelská Z, Klimešová K, Přibylová J, Bártová J, Sanchez D, Fundová P, Borovská D, Srůtková D, Zídek Z, Schwarzer M, Drastich P, Funda DP. 2011. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 8:110–120. 10.1038/cmi.2010.67 PubMed DOI PMC

Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani BR, Flint HJ, Salminen S, Calder PC, Sanders ME. 2014. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11:506–514. 10.1038/nrgastro.2014.66 PubMed DOI

Ruas-Madiedo P, Medrano M, Salazar N, de los Reyes-Gavilán CG, Pérez P, Abraham AG. 2010. Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro de cytotoxic effect of bacterial toxins on eukaryotic cells. J. Appl. Microbiol. 109:2079–2086. 10.1111/j.1365-2672.2010.04839.x PubMed DOI

Philpott DJ, Girardin SE. 2004. The role of Toll-like receptors and Nod proteins in bacterial infection. Mol. Immunol. 41:1099–1108. 10.1016/j.molimm.2004.06.012 PubMed DOI

Lee I, Timita S, Kleerebezem M, Bron PA. 2013. The quest for probiotic effector molecules: unraveling strain specificity at the molecular level. Pharmacol. Res. 69:61–74. 10.1016/j.phrs.2012.09.010 PubMed DOI

Górska S, Grycko P, Rybka J, Gamian A. 2007. Exopolysaccharide of lactic acid bacteria: structure and biosynthesis. Postępy Hig. Med. Dosw. 61:805–818 PubMed

Ruas-Madiedo P, Gueimonde M, Margolles A, de los Reyes-Gavilan CG, Salminen S. 2006. Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J. Food Prot. 69:2011–2015 PubMed

Conover MS, Sloan GP, Love CF, Sukumar N, Deora R. 2010. The Bps polysaccharide of Bordetella pertussis promotes colonization and biofilm formation in the nose by functioning as an adhesin. Mol. Microbiol. 77:1439–1455. 10.1111/j.1365-2958.2010.07297.x PubMed DOI PMC

Lebeer S, Vanderleyden J, de Keersmaecker SCJ. 2010. Host interactions of probiotic bacterial surface molecule: comparison with commensals and pathogens. Nat. Rev. Microbiol. 8:171–184. 10.1038/nrmicro2297 PubMed DOI

Fanning S, Hall LJ, van Sinderen D. 2012. Bifidobacterium breve UCC2003 surface exopolysaccharide production is a beneficial trait mediating commensal-host interaction through immune modulation and pathogen protection. Gut Microbes 3:420–425. 10.4161/gmic.20630 PubMed DOI

Medrano M, Hamet MF, Abraham AG, Pérez PF. 2009. Kefiran protects Caco-2 cells from cytopathic effects induced by Bacillus cereus infection. Antonie Van Leeuwenhoek 96:505–513. 10.1007/s10482-009-9366-z PubMed DOI

Cukrowska B, Rosiak I, Klewicka E, Motyl I, Schwarzer M, Libudzisz Z, Kozakova H. 2010. Impact of heat-inactivated Lactobacillus casei and Lactobacillus paracasei strains on cytokine responses in whole blood cell cultures of children with atopic dermatitis. Folia Microbiol. (Praha) 55:277–280. 10.1007/s12223-010-0041-6 PubMed DOI

Aleksandrzak-Piekarczyk T, Koryszewska-Bagińska A, Bardowski J. 2013. Genome sequence of the probiotic strain Lactobacillus rhamnosus (formerly Lactobacillus casei) LOCK900. Genome Announc. 1:e00640-13. 10.1128/genomeA.00640-13 PubMed DOI PMC

Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K, Cleenwerck I, Vancanneyt M, Swings J. 2007. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int. J. Syst. Evol. Microbiol. 57:2777–2789. 10.1099/ijs.0.64711-0 PubMed DOI

Péant B, LaPointe G, Gilbert C, Atlan D, Ward P, Roy D. 2005. Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiology 151:1839–1851. 10.1099/mic.0.27852-0 PubMed DOI

Hayward AC, Davis GHG. 1956. The isolation and classification of Lactobacillus strains from Italian saliva. Br. Dent. J. 101:43–46

Rigaux P, Daniel C, Hisbergues M, Muraille E, Hols P, Pot B, Pestel J, Jacquet A. 2009. Immunomodulatory properties of Lactobacillus plantarum and its use as a recombinant vaccine against mite allergy. Allergy 64:406–414. 10.1111/j.1398-9995.2008.01825.x PubMed DOI

Schwarzer M, Repa A, Daniel C, Schabussova I, Hrncir T, Pot B, Stepankova R, Hudcovic T, Pollak A, Tlaskalova-Hogenova H, Wiedermann U, Kozakova H. 2011. Neonatal colonization of mice with Lactobacillus plantarum producing the aeroallergen Bet v 1 biases towards Th1 and T-regulatory responses upon systemic sensitization. Allergy 66:368–375. 10.1111/j.1398-9995.2010.02488.x PubMed DOI

Repa A, Grangette C, Daniel C, Hochreiter R, Hoffmann-Sommergruber K, Thalhamer J, Kraft D, Breiteneder H, Mercenier A, Wiedermann U. 2003. Mucosal co-application of lactic acid bacteria and allergen induces counter-regulatory immune responses in a murine model of birch pollen allergy. Vaccine 22:87–95. 10.1016/S0264-410X(03)00528-0 PubMed DOI

Górska-Frączek S, Sandström C, Kenne L, Paściak M, Brzozowska E, Strus M, Heczko P, Gamian A. 2013. The structure and immunoreactivity of exopolysaccharide isolated from Lactobacillus johnsonii strain 151. Carbohydr. Res. 378:148–153. 10.1016/j.carres.2013.05.012 PubMed DOI

Dubois M, Giller KA, Rebers PA, Smith FA. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350–356. 10.1021/ac60111a017 DOI

Chen PS, Toribara TV, Warner H. 1956. Microdetermination of phosphorus. Anal. Chem. 28:1756–1758. 10.1021/ac60119a033 DOI

Sawardeker JS, Sloneker JH, Jeanes A. 1956. Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromatography. Anal. Chem. 37:1602–1603

Ciukanu I, Kerek FA. 1984. simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 131:209–217. 10.1016/0008-6215(84)85242-8 DOI

Gerwig GJ, Kamerling JP, Vliegenthart JFG. 1979. Determination of the absolute configuration of monosaccharides in complex carbohydrates by capillary G.L.C. Carbohydr. Res. 77:10–17 PubMed

Goddard TD, Kneller DG. 2001. SPARKY, 3rd ed. University of California, San Francisco, San Francisco, CA

Bock K, Pedersen C. 1983. Carbon-13 nuclear magnetic resonance spectroscopy of monosaccharides. Adv. Carbohydr. Chem. Biochem. 41:27–66. 10.1016/S0065-2318(08)60055-4 DOI

Lipkind GM, Shashkov AS, Knirel YA, Vinogradov EV, Kochetkov NK. 1988. A computer-assisted structural analysis of regular polysaccharides on the basis of carbon-13 NMR data. Carbohydr. Res. 175:59–75. 10.1016/0008-6215(88)80156-3 PubMed DOI

Gorin PAJ, Mazurek M. 1975. Further studies on the assignment of signals in 13C magnetic resonance spectra of aldoses and derived methyl glycosides. Can. J. Chem. 53:1212–1223. 10.1139/v75-168 DOI

Urai M, Aizawa T, Anzai H, Oihara J, Iwabuchi N, Neilan B, Couperwhite I, Nakajima M, Sunairi M. 2006. Structural analysis of an extracellular polysacchardie porduced by a benzene tolerant bacterium, Rhodococcus sp. 33. Carbohydr. Res. 341:616–623. 10.1016/j.carres.2006.01.010 PubMed DOI

Katzenellenbogen E, Kocharova NA, Toukach PV, Górska S, Bogulska M, Gamian A, Knirel AY. 2012. Structures of a unique O-polysaccharide of Edwardsiella tarda PCM 1153 containing an amide of galacturonic acid with 2-aminopropane-1,3-diol and an abequose-containing O-polysaccharide shared by E. tarda PCM 1145, PCM 1151 and PCM 1158. Carbohydr. Res. 355:56–62. 10.1016/j.carres.2012.04.004 PubMed DOI

Jansson PE, Kenne L, Widmalm G. 1989. Computer-assisted structural analysis of polysaccharides with an extended version of CASPER using 1H- and 13C-NMR data. Carbohydr. Res. 188:169–191. 10.1016/0008-6215(89)84069-8 PubMed DOI

Gorin PA. 1981. Carbon-13 nuclear magnetic resonance spectroscopy of polysaccharides. Adv. Carbohydr. Chem. Biochem. 38:13–104. 10.1016/S0065-2318(08)60309-1 DOI

Altona C, Haasnoot CAG. 1980. Prediction of anti and gauche vicinal proton-proton coupling constants in carbohydrates: a simple additivity rule for pyranose rings. Org. Magn. Reson. 13:417–429. 10.1002/mrc.1270130606 DOI

Van Calsteren MR, Pau-Roblot C, Begin A, Roy D. 2002. Structure determination of the exopolysaccharide produced by Lactobacillus rhamnosus strains RW-9595M and R. Biochem. J. 253:7–17 PubMed PMC

Jansson PE, Lindberg B, Lindquist U. 1981. Structural studies of the capsular polysaccharide from Streptococcus pneumoniae type 4. Carbohydr. Res. 95:73–80. 10.1016/S0008-6215(00)85296-9 PubMed DOI

Gorin PA, Spencer JF, Lindberg B, Lindh F. 1980. Structure of the extracellular polysaccharide from Corynebacterium insidiosum. Carbohydr. Res. 79:313–315. 10.1016/S0008-6215(00)83846-X PubMed DOI

Lawson CJ, McCleary CW, Nakada HI, Rees DA, Sutherland IW, Wilkinson JF. 1969. Structural analysis of colanic acid from Escherichia coli by using methylation and base-catalysed fragmentation. Comparison with polysaccharides from other bacterial sources. Biochem. J. 115:947–958 PubMed PMC

Kabat EA, Liao J, Bretting H, Franklin EC, Geltner D, Frangione B, Koshland ME, Shyong J, Osserman EF. 1980. Human monoclonal macroglobulins with specificity for Klebsiella K polysaccharides that contain 3,4-pyruvylated-d-galactose and 4,6-pyruvylated-d-galactose. J. Exp. Med. 152:979–995. 10.1084/jem.152.4.979 PubMed DOI PMC

Gormus BJ, Wheat RW, Porter JF. 1971. Occurrence of pyruvic acid in capsular polysaccharides from various Klebsiella species. J. Bacteriol. 107:150–154 PubMed PMC

Jansson PE, Kenne L, Lindberg B, Ljunggren H, Lonngren J, Ruden U, Svensson S. 1977. Demonstration of an octasaccharide repeating unit in the extracellular polysaccharide of Rhizobium meliloti by sequential degradation. J. Am. Chem. Soc. 99:3812–3815. 10.1021/ja00453a049 PubMed DOI

Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Kang Chen K, He B, Cassis L, Bigas A, Cols M, Comerma L, Huang B, Blander JM, Xiong H, Mayer L, Berin C, Augenlicht LH, Velcich A, Cerutti A. 2013. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342:447–453. 10.1126/science.1237910 PubMed DOI PMC

Sengupta R, Eric Altermann E, Anderson RC, McNabb WC, Moughan PJ, Roy NC. 2013. The role of cell surface architecture of Lactobacilli in hostmicrobe interactions in the gastrointestinal tract. Mediators Inflamm. 2013:237921. 10.1155/2013/237921 PubMed DOI PMC

Hidalgo-Cantabrana C, López P, Gueimonde M, de los Reyes-Gavilán CG, Suárez A, Margolles A, Ruas-Madiedo P. 2012. Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics Antimicrob. Proteins 4:227–237. 10.1007/s12602-012-9110-2 PubMed DOI

López P, Monteserín DC, Gueimonde M, de los Reyes-Gavilán CG, Margolles A, Suárez A, Ruas-Madiedo P. 2012. Exopolysaccharide-producing Bifidobacterium strains elicit different in vitro response upon human cells. Food Res. Int. 46:99–107. 10.1016/j.foodres.2011.11.020 DOI

Shao L, Wu Z, Zhang H, Chen W, Ai L, Guo B. 2014. Partial characterization and immunostimulatory activity ofexopolysaccharides from Lactobacillus rhamnosus KF. Carbohydr. Polym. 107:51–56. 10.1016/j.carbpol.2014.02.037 PubMed DOI

Surayot U, Wang J, Seesuriyachan P, Kuntiya A, Tabarsa M, Lee YJ, Kim JK, Park WJ, You SG. 2014. Exopolysaccharides from lactic acid bacteria: structural analysis, molecular weight effect on immunomodulation. Int. J. Biol. Macromol. 68:233–240. 10.1016/j.ijbiomac.2014.05.005 PubMed DOI

Liu CF, Tseng KC, Chiang SS, Lee BH, Hsu WH, Pan TM. 2011. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J. Sci. Food Agric. 91:2284–2291. 10.1002/jsfa.4456 PubMed DOI

Li W, Ji J, Tang W, Rui X, Chen X, Jiang M, Dong M. 2014. Characterization of an antiproliferative exopolysaccharide (LHEPS-2) from Lactobacillus helveticus MB2-1. Carbohydr. Polym. 105:334–340. 10.1016/j.carbpol.2014.01.093 PubMed DOI

Wang K, Li W, Riu X, Chen X, Jiang M, Dong M. 2014. Structural characterization and bioactivity of released exopolysaccharides from Lactobacillus plantarum 70810. Int. J. Biol. Macromol. 67:71–78. 10.1016/j.ijbiomac.2014.02.056 PubMed DOI

Uchida M, Ishii I, Inoue C, Akisato Y, Watanabe K, Hosoyama S, Toida T, Ariyoshi N, Kitada M. 2010. Kefiran reduces atherosclerosis in rabbits fed a high cholesterol diet. J. Atheroscler. Thromb. 17:980–988. 10.5551/jat.4812 PubMed DOI

Vinderola G, Perdigon G, Duarte J, Farnworth E, Matar C. 2006. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36:254–260. 10.1016/j.cyto.2007.01.003 PubMed DOI

Nowak B, Ciszek-Lenda M, Sróttek M, Gamian A, Kontny E, Górska-Frączek S, Marcinkiewicz J. 2012. Lactobacillus rhamnosus exopolysaccharide ameliorates arthritis induced by the systemic injection of collagen and lipopolysaccharide in DBA/1 mice. Arch. Immunol. Ther. Exp. 60:211–220. 10.1007/s00005-012-0170-5 PubMed DOI

Chabot S, Yu HL, de Léséleuc L, Cloutier D, van Calsteren MR, Lessard M, Roy D, Lacroix M, Oth D. 2001. Exopolysaccharides from Lactobacillus rhamnosus RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells, and IFN-c in mouse splenocytes. Lait 81:683–687. 10.1051/lait:2001157 DOI

Medina M, Izquierdo E, Ennahar S, Sanz Y. 2007. Differential immunomodulatory properties of Bifidobacterium longum strains: relevance to probiotic selection and clinical applications. Clin. Exp. Immunol. 150:531–538. 10.1111/j.1365-2249.2007.03522.x PubMed DOI PMC

Makino S, Ikegami S, Kano H, Sashihara T, Sugano H, Horiuchi H, Saito T, Oda M. 2006. Immunomodulatory effects of polysaccharides produced by Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. J. Dairy Sci. 89:2873–2881. 10.3168/jds.S0022-0302(06)72560-7 PubMed DOI

Bleau C, Monges A, Rashidan K, Laverdure JP, Lacroix M, van Calsteren MR, Millette M, Savard R, Lamontagne L. 2010. Intermediate chains of expolysaccharides form Lactobacillus rhamnosus RW-9595M increase IL-10 production by macrophages. J. Appl. Microbiol. 108:666–675. 10.1111/j.1365-2672.2009.04450.x PubMed DOI

Hidalgo-Cantabrana C, Nikolic M, López P, Suárez A, Miljkovic M, Kojic M, Margolles A, Golic N, Ruas-Madiedo P. 2014. Exopolysaccharide-producing Bifidobacterium animalis subsp. lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue. Anaerobe 26:24–30. 10.1016/j.anaerobe.2014.01.003 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Crucial Role of Microbiota in Experimental Psoriasis Revealed by a Gnotobiotic Mouse Model

. 2019 ; 10 () : 236. [epub] 20190221

Germ-Free Mice Exhibit Mast Cells With Impaired Functionality and Gut Homing and Do Not Develop Food Allergy

. 2019 ; 10 () : 205. [epub] 20190212

Polysaccharides L900/2 and L900/3 isolated from Lactobacillus rhamnosus LOCK 0900 modulate allergic sensitization to ovalbumin in a mouse model

. 2017 May ; 10 (3) : 586-593. [epub] 20170206

Immunoreactive Proteins of Bifidobacterium longum ssp. longum CCM 7952 and Bifidobacterium longum ssp. longum CCDM 372 Identified by Gnotobiotic Mono-Colonized Mice Sera, Immune Rabbit Sera and Non-immune Human Sera

. 2016 ; 7 () : 1537. [epub] 20160929

Chemical characterization and immunomodulatory properties of polysaccharides isolated from probiotic Lactobacillus casei LOCK 0919

. 2016 Sep ; 26 (9) : 1014-1024. [epub] 20160421

Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization

. 2016 Mar ; 13 (2) : 251-62. [epub] 20150323

Identification of Lactobacillus proteins with different recognition patterns between immune rabbit sera and nonimmune mice or human sera

. 2016 Feb 09 ; 16 () : 17. [epub] 20160209

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...