Chemical characterization and immunomodulatory properties of polysaccharides isolated from probiotic Lactobacillus casei LOCK 0919
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27102285
PubMed Central
PMC5045530
DOI
10.1093/glycob/cww047
PII: cww047
Knihovny.cz E-zdroje
- Klíčová slova
- Lactobacillus, NMR spectroscopy, immunomodulation, polysaccharide, probiotic,
- MeSH
- buněčná imunita účinky léků MeSH
- Escherichia coli imunologie MeSH
- imunologické faktory chemie imunologie terapeutické užití MeSH
- Lactobacillus casei chemie imunologie MeSH
- lidé MeSH
- polysacharidy chemie imunologie MeSH
- probiotika terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- imunologické faktory MeSH
- polysacharidy MeSH
The Lactobacillus casei strain, LOCK 0919, is intended for the dietary management of food allergies and atopic dermatitis (LATOPIC® BIOMED). The use of a probiotic to modulate immune responses is an interesting strategy for solving imbalance problems of gut microflora that may lead to various disorders. However, the exact bacterial signaling mechanisms underlying such modulations are still far from being understood. Here, we investigated variations in the chemical compositions and immunomodulatory properties of the polysaccharides (PS), L919/A and L919/B, which are produced by L. casei LOCK 0919. By virtue of their chemical features, such PS can modulate the immune responses to third-party antigens. Our results revealed that L919/A and L919/B could both modulate the immune response to Lactobacillus planatarum WCFS1, but only L919/B could alter the response of THP-1 cells (in terms of tumor necrosis factor alpha production) to L. planatarum WCFS1 and Escherichia coli Nissle 1917. The comprehensive immunochemical characterization is crucial for the understanding of the biological function as well as of the bacteria-host and bacteria-bacteria cross-talk.
Zobrazit více v PubMed
Ai L, Zhang H, Guo B, Chen W, Wu Z, Wu Y.. 2008. Preparation, partial characterization and bioactivity of exopolysaccharides from Lactobacillus casei LC2W. Carbohydr Polym. 74:353–357. PubMed
Aleksandrzak-Piekarczyk T, Koryszewska-Bagińska A, Bardowski J.. 2013. Complete genome sequence of the probiotic strain Lactobacillus casei (formerly Lactobacillus paracasei) LOCK919. Genome Announc. doi:10.1128/genomeA.00758–13. PubMed DOI PMC
Bock K, Pedersen C.. 1983. Carbon-13 nuclear magnetic resonance spectroscopy of monosaccharides. Adv Carbohydr Chem Biochem. 41:27–66.
Chen PS, Toribara TV, Warner H.. 1956. Microdetermination of phosphorus. Anal Chem. 28:1756–1758.
Ciszek-Lenda M, Strus M, Górska-Frączek S, Targosz-Korecka M, Śróttek M, Heczko PB, Gamian A, Szymoński M, Marcinkiewicz J.. 2011. Strain specific immunostimulatory potential of lactobacilli-derived exopolysaccharides. Cent Eur J Immunol. 36:121–129.
Ciukanu I, Kerek FA.. 1984. Simple and rapid method for the permethylation of carbohydrates. Carbohydr Res. 131:209–217.
Dertli E, Mayer MJ, Narbad A.. 2015. Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785. BMC Microbiol. 15:8. PubMed PMC
Dubois M, Giller KA, Rebers PA, Smith FA.. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem. 28:350–356.
Fanning S, Hall LJ, van Sinderen D.. 2012. Bifidobacterium breve UCC2003 surface exopolysaccharide production is a beneficial trait mediating commensal-host interaction through immune modulation and pathogen protection. Gut Microbes. 3:420–425. PubMed
FAO/WHO. 2001. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. www.fao.org.
Gao K, Wang C, Liu L, Dou X, Liu J, Yuan L, Zhang W, Wang H.. 2015. Immunomodulation and signaling mechanism of Lactobacillus rhamnosus GG and its components on porcine intestinal epithelial cells stimulated by lipopolysaccharide. J Microbiol Immunol Infect. doi:10.1016/j.jmii.2015.05.002. PubMed DOI
Gerwig GJ, Kamerling JP, Vliegenthart JFG.. 1979. Determination of the absolute configuration of monosaccharides in complex carbohydrates by capillary G.L.C. Carbohydr Res. 77:10–17. PubMed
Gill HS, Rutherfurd KJ, Prasad J, Gopal PK.. 2000. Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br J Nutr. 83:167–176. PubMed
Goddard TD, Kneller DG.. 2001. SPARKY. 3rd ed. San Francisco, CA: University of California.
Gorin PAJ, Mazurek M.. 1975. Further studies on the assignment of signals in 13C magnetic resonance spectra of aldoses and derived methyl glycosides. Can J Chem. 53:1212–1223.
Górska S, Grycko P, Rybka J, Gamian A.. 2007. Exopolysaccharides of lactic acid bacteria: Structure and biosynthesis. Postepy Hig Med Dosw. 61:805–818. PubMed
Górska S, Jarząb A, Gamian A.. 2009. Probiotic bacteria in the human gastrointestinal tract as a factor stimulating the immune system. Postepy Hig Med Dosw. 63:653–667. PubMed
Górska S, Schwarzer M, Jachymek W, Srutkova D, Brzozowska E, Kozakova H, Gamian A.. 2014. Distinct immunomodulation of bone marrow-derived dendritic cell responses to Lactobacillus plantarum WCFS1 by two different polysaccharides isolated from Lactobacillus rhamnosus LOCK 0900. Appl Environ Microbiol. 80:6506–6516. PubMed PMC
Górska-Frączek S, Sandström C, Kenne L, Paściak M, Brzozowska E. Strus M, Heczko PB, Gamian A.. 2013. The structure and immunoreactivity of exopolysaccharide isolated from Lactobacillus johnsonii strain 151. Carbohydr Res. 378:148–53. PubMed
Górska-Frączek S, Sandström C, Kenne L, Rybka J, Strus M, Heczko PB, Gamian A.. 2011. Structural studies of the exopolysaccharide consisting of a nonasaccharide repeating unit isolated from Lactobacillus rhamnosus KL37B. Carbohydr Res. 346:2926–2932. PubMed
Hayward AC, Davis GHG.. 1956. The isolation and classification of Lactobacillus strains from Italian saliva. Br Dent J. 101:43–46.
Jansson PE, Kenne L, Widmalm G.. 1989. Computer-assisted structural analysis of polysaccharides with an extended version of CASPER using 1H and 13C-NMR data. Carbohydr Res. 188:169–191. PubMed
Kaji R, Kiyoshima-Shibata J, Nagaoka M, Nanno M, Shida K.. 2010. Bacterial teichoic acids reverse predominant IL-12 production induced by certain lactobacillus strains into predominant IL-10 production via TLR2-dependent ERK activation in macrophages. J Immunol. 184:3505–3513. PubMed
Kant R, Blom J, Palva A, Siezen RJ, de Vos WM.. 2011. Comparative genomics of Lactobacillus. Microbial Biotechnol. 4:323–332. PubMed PMC
Katzenellenbogen E, Kocharova NA, Toukach PV, Górska S, Korzeniowska-Kowal A, Bogulska M, Gamian A, Knirel YA.. 2009. Structure of an abequose-containing O-polysaccharide from Citrobacter freundii O22 strain PCM 1555. Carbohydr Res. 344:1724–1728. PubMed
Kim HG, Lee SY, Kim NR, Lee HY, Ko MY, Jung BJ, Kim CM, Lee JM, Park JH, Han SH, et al. . 2011. Lactobacillus plantarum lipoteichoic acid down-regulated Shigella flexneri peptidoglycan-induced inflammation. Mol Immunol. 48:382–391. PubMed
Kozakova H, Schwarzer M, Tuckova L, Srutkova D, Czarnowska E, Rosiak I, Hudcovic T, Schabussova I, Hermanova P, Zakostelska Z, et al. . 2015. Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell Mol Immunol. doi:10.1038/cmi.2015.09. PubMed DOI PMC
Landersjö C, Yang Z, Huttunen E, Widmalm G.. 2002. Structural studies of the exopolysaccharide produced by Lactobacillus rhamnosus strain GG (ATCC 53103. Biomacromolecules. 3:880–884. PubMed
Lipkind GM, Shashkov AS, Knirel YA, Vinogradov EV, Kochetkov NK.. 1988. A computer-assisted structural analysis of regular polysaccharides on the basis of carbon-13 NMR data. Carbohydr Res. 175:59–75. PubMed
Lebeer S, Verhoeven TL, Francius G, Schoofs G, Lambrichts I, Dufrêne Y, Vanderleyden J, De Keersmaecker SC.. 2009. Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Appl Environ Microbiol. 75:3554–3563. PubMed PMC
Lebeer S, Claes IIJ, Verhoeven TLA, Vanderleyden J, De Keersmaecker SCJ.. 2011. Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microbial Biotechnol. 4:368–374. PubMed PMC
Luyer MD, Buurman WA, Hadfoune M, Speelmans G, Knol J, Jacobs JA, Dejong CHC, Vriesema AJM, Greve JWM.. 2005. Strain-specific effects of probiotics on gut barrier integrity following hemorrhagic shock. Infect Immun. 73:3686–3692. PubMed PMC
Maassen CBM, Boersma WJA, van Holten-Neelen C, Claassen E, Laman JD.. 2003. Growth phase of orally administered Lactobacillus strains differentially affects IgG1/IgG2a ratio for soluble antigens: Implications for vaccine development. Vaccine. 21:2751–2757. PubMed
Marshall VM, Rawson HL.. 1999. Effects of exopolysaccharide - Producing strains of thermophilic lactic acid bacteria on the texture of stirred yoghurt. Int J. Food Sci Technol. 34:137–143.
Mattu B, Chauhan A.. 2013. Lactic acid bacteria and its use in probiotics. J Bioremed Biodeg. doi:10.4172/2155-6199.1000e140 DOI
McFarland LV. 2006. Meta‑analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol. 101:812–822. PubMed
Sawardeker JS, Sloneker JH, Jeanes A.. 1956. Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromatography. Anal Chem. 37:1602–1603.
Segers ME, Lebeer S.. 2014. Towards a better understanding of Lactobacillus rhamnosus GG - Host interactions. Microb Cell Fact. doi:10.1186/1475-2859-13-S1-S7. PubMed DOI PMC
Shibata N, Okawa Y.. 2011. Chemical structure of β-galactofuranose-containing polysaccharide and O-linked oligosaccharides obtained from the cell wall of pathogenic dematiaceous fungus Fonsecaea pedrosoi. Glycobiology. 21:69–81. PubMed
Shida K, Kiyoshima-Shibata J, Nagaoka M, Watanabe K, Nanno MJ.. 2006. Induction of interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular digestion. J Dairy Sci. 89:3306–3317. PubMed
Taverniti V, Guglielmetti S.. 2011. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: Proposal of paraprobiotic concept). Genes Nutr. 6:261–274. PubMed PMC
Tursi A, Brandimarte G, Papa A, Giglio A, Elisei W, Giorgetti GM, Forti G, Morini S, Hassan C, Pistoia MA, et al. . 2010. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: A double-blind, randomized, placebo-controlled study. Am J Gastroenterol. 105:2218–2227. PubMed PMC
Wells JM. 2011. Immunomodulatory mechanisms of lactobacilli. Microb Cell Fact. doi:10.1186/1475-2859-10-S1-S17 PubMed DOI PMC
Weston S, Halbert A, Richmond P, Prescott SL.. 2005. Effects of probiotics on atopic dermatitis: A randomised controlled trial. Arch Dis Child. 90:892–897. PubMed PMC
Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, Yang Z, Li S.. 2013. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int J Biol Macromol. 54:270–275. PubMed