Germ-Free Mice Exhibit Mast Cells With Impaired Functionality and Gut Homing and Do Not Develop Food Allergy
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30809227
PubMed Central
PMC6379318
DOI
10.3389/fimmu.2019.00205
Knihovny.cz E-zdroje
- Klíčová slova
- commensal bacteria, food allergy, germ-free, mast cells, mouse models,
- MeSH
- biologické markery MeSH
- buněčná diferenciace genetika imunologie MeSH
- cytokiny metabolismus MeSH
- degranulace buněk genetika imunologie MeSH
- gnotobiologické modely MeSH
- mastocyty imunologie metabolismus MeSH
- metagenom MeSH
- metagenomika metody MeSH
- mikrobiota * imunologie MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- náchylnost k nemoci MeSH
- potravinová alergie etiologie metabolismus patologie MeSH
- RNA ribozomální 16S MeSH
- střevní mikroflóra MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- cytokiny MeSH
- RNA ribozomální 16S MeSH
Background: Mucosal mast cells (MC) are key players in IgE-mediated food allergy (FA). The evidence on the interaction between gut microbiota, MC and susceptibility to FA is contradictory. Objective: We tested the hypothesis that commensal bacteria are essential for MC migration to the gut and their maturation impacting the susceptibility to FA. Methods: The development and severity of FA symptoms was studied in sensitized germ-free (GF), conventional (CV), and mice mono-colonized with L. plantarum WCFS1 or co-housed with CV mice. MC were phenotypically and functionally characterized. Results: Systemic sensitization and oral challenge of GF mice with ovalbumin led to increased levels of specific IgE in serum compared to CV mice. Remarkably, despite the high levels of sensitization, GF mice did not develop diarrhea or anaphylactic hypothermia, common symptoms of FA. In the gut, GF mice expressed low levels of the MC tissue-homing markers CXCL1 and CXCL2, and harbored fewer MC which exhibited lower levels of MC protease-1 after challenge. Additionally, MC in GF mice were less mature as confirmed by flow-cytometry and their functionality was impaired as shown by reduced edema formation after injection of degranulation-provoking compound 48/80. Co-housing of GF mice with CV mice fully restored their susceptibility to develop FA. However, this did not occur when mice were mono-colonized with L. plantarum. Conclusion: Our results demonstrate that microbiota-induced maturation and gut-homing of MC is a critical step for the development of symptoms of experimental FA. This new mechanistic insight into microbiota-MC-FA axis can be exploited in the prevention and treatment of FA in humans.
Zobrazit více v PubMed
Yu W, Freeland DMH, Nadeau KC. Food allergy: immune mechanisms, diagnosis and immunotherapy. Nat Rev Immunol. (2016) 16:751–65. 10.1038/nri.2016.111 PubMed DOI PMC
Lee JB, Chen CY, Liu B, Mugge L, Angkasekwinai P, Facchinetti V, et al. . IL-25 and CD4+ TH2 cells enhance type 2 innate lymphoid cell-derived IL-13 production, which promotes IgE-mediated experimental food allergy. J Allergy Clin Immunol. (2016) 137:1216–25.e1215. 10.1016/j.jaci.2015.09.019 PubMed DOI PMC
Berin MC, Sampson HA. Mucosal immunology of food allergy. Curr Biol. (2013) 23:R389–400. 10.1016/j.cub.2013.02.043 PubMed DOI PMC
Kraneveld AD, Sagar S, Garssen J, Folkerts G. The two faces of mast cells in food allergy and allergic asthma: the possible concept of Yin Yang. Biochim Biophys Acta Mol Basis Dis. (2012) 1822:93–9. 10.1016/j.bbadis.2011.06.013 PubMed DOI
Liu AH, Jaramillo R, Sicherer SH, Wood RA, Bock SA, Burks AW, et al. . National prevalence and risk factors for food allergy and relationship to asthma: results from the national health and nutrition examination survey 2005-2006. J Allergy Clin Immunol. (2010) 126:798–806.e714. 10.1016/j.jaci.2010.07.026 PubMed DOI PMC
Brough HA, Cousins DJ, Munteanu A, Wong YF, Sudra A, Makinson K, et al. . IL-9 is a key component of memory TH cell peanut-specific responses from children with peanut allergy. J Allergy Clin Immunol. (2014) 134:1329–38.e1310. 10.1016/j.jaci.2014.06.032 PubMed DOI
Okada H, Kuhn C, Feillet H, Bach JF. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exp Immunol. (2010) 160:1–9. 10.1111/j.1365-2249.2010.04139.x PubMed DOI PMC
Liu AH. Revisiting the hygiene hypothesis for allergy and asthma. J Allergy Clin Immunol. (2015) 136:860–5. 10.1016/j.jaci.2015.08.012 PubMed DOI
Morin S, Fischer R, Przybylski-Nicaise L, Bernard H, Corthier G, Rabot S, et al. . Delayed bacterial colonization of the gut alters the host immune response to oral sensitization against cow's milk proteins. Mol Nutr Food Res. (2012) 56:1838–47. 10.1002/mnfr.201200412 PubMed DOI
Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, et al. . Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA. (2014) 111:13145–50. 10.1073/pnas.1412008111 PubMed DOI PMC
Schwarzer M, Srutkova D, Schabussova I, Hudcovic T, Akgün J, Wiedermann U, et al. . Neonatal colonization of germ-free mice with Bifidobacterium longum prevents allergic sensitization to major birch pollen allergen Bet v 1. Vaccine (2013) 31:5405–12. 10.1016/j.vaccine.2013.09.014 PubMed DOI
Kozakova H, Schwarzer M, Tuckova L, Srutkova D, Czarnowska E, Rosiak I, et al. . Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell Mol Immunol. (2016) 13:251–62. 10.1038/cmi.2015.09 PubMed DOI PMC
Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P, Hughes S, et al. . Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ Microbiol. (2016) 18:4974–89. 10.1111/1462-2920.13455 PubMed DOI
Meijerink M, Wells JM, Taverne N, de Zeeuw Brouwer ML, Hilhorst B, Venema K, et al. . Immunomodulatory effects of potential probiotics in a mouse peanut sensitization model. FEMS Immunol Med Microbiol. (2012) 65:488–96. 10.1111/j.1574-695X.2012.00981.x PubMed DOI
Górska S, Schwarzer M, Jachymek W, Srutkova D, Brzozowska E, Kozakova H, et al. . Distinct immunomodulation of bone marrow-derived dendritic cell responses to Lactobacillus plantarum WCFS1 by two different polysaccharides isolated from Lactobacillus rhamnosus LOCK 0900. Appl Environ Microbiol. (2014) 80:6506–16. 10.1128/AEM.02104-14 PubMed DOI PMC
van den Nieuwboer M, van Hemert S, Claassen E, de Vos WM, van den Nieuwboer M, van Hemert S, et al. . (2016). Lactobacillus plantarum WCFS1 and its host interaction: a dozen years after the genome. Microb. Biotechnol. 9, 452–465. 10.1111/1751-7915.12368 PubMed DOI PMC
Smelt MJ, de Haan BJ, Bron PA, van Swam I, Meijerink M, Wells JM, et al. . (2012). L. plantarum, L. salivarius, and L. lactis attenuate Th2 responses and increase Treg frequencies in healthy mice in a strain dependent manner. PLoS ONE 7:e47244. 10.1371/journal.pone.0047244 PubMed DOI PMC
Lantz CS, Boesiger J, Song CH, Mach N, Kobayashi T, Mulligan RC, et al. . Role for interleukin-3 in mast cell and basophil development and immunity to parasites. Nature (1998) 392:90–3. 10.1038/32190 PubMed DOI
Pennock JL, Grencis RK. In vivo exit of c-kit + / CD49d hi /b7+ mucosal mast cell precursors from the bone marrow following infection with the intestinal nematode Trichinella spiralis. Cell (2004) 103:2655–60. 10.1182/blood-2003-09-3146 PubMed DOI
Olivera A, Beaven MA, Metcalfe DD. Mast cells signal their importance in health and disease. J Allergy Clin Immunol. (2018) 142:381–93. 10.1016/j.jaci.2018.01.034 PubMed DOI
Kurashima Y, Kiyono H. New era for mucosal mast cells: their roles in inflammation, allergic immune responses and adjuvant development. Exp Mol Med. (2014) 46:e83. 10.1038/emm.2014.7 PubMed DOI PMC
Reber LL, Sibilano R, Mukai K, Galli RSL, Sibilano R. Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol. (2015) 8:444–63. 10.1038/mi.2014.131 PubMed DOI PMC
Kunii J, Takahashi K, Kasakura K, Tsuda M, Nakano K, Hosono A, et al. . Commensal bacteria promote migration of mast cells into the intestine. Immunobiology (2011) 216:692–7. 10.1016/j.imbio.2010.10.007 PubMed DOI
Halova I, Draberova L, Draber P. Mast cell chemotaxis chemoattractants and signaling pathways. Front Immunol. (2012) 3:119. 10.3389/fimmu.2012.00119 PubMed DOI PMC
Wang Z, Mascarenhas N, Eckmann L, Miyamoto Y, Sun X, Kawakami T, et al. Skin microbiome promotes mast cell maturation by triggering stem cell factor (SCF) production in keratinocytes. J Allergy Clin Immunol. (2016) 139:1205–16.e6. 10.1016/j.jaci.2016.09.019 PubMed DOI PMC
Guy-Grand D, Dy M, Luffau G, Vassalli P. Gut mucosal mast cells: origin, traffic, and differentiation. J Exp Med. (1984) 160:12–28. PubMed PMC
Brandt EB, Strait RT, Hershko D, Wang Q, Muntel EE, Scribner TA, et al. . Mast cells are required for experimental oral allergen – induced diarrhea. J Clin Investig. (2003) 112:1666–77. 10.1172/JCI19785 PubMed DOI PMC
Chen CY, Lee JB, Liu B, Ohta S, Wang PY, Kartashov AV, et al. . Induction of Interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. Immunity (2015) 43:788–802. 10.1016/j.immuni.2015.08.020 PubMed DOI PMC
Balbino B, Sibilano R, Starkl P, Marichal T, Gaudenzio N, Karasuyama H, et al. . Pathways of immediate hypothermia and leukocyte infiltration in an adjuvant-free mouse model of anaphylaxis. J Allergy Clin Immunol. (2017) 139:584–96. 10.1016/j.jaci.2016.05.047 PubMed DOI PMC
Ahrens R, Osterfeld H, Wu D, Chen CY, Arumugam M, Groschwitz K, et al. . Intestinal mast cell levels control severity of oral antigen-induced anaphylaxis in mice. Am J Pathol. (2012) 180:1535–46. 10.1016/j.ajpath.2011.12.036 PubMed DOI PMC
Cahenzli J, Köller Y, Wyss M, Geuking MB, McCoy D, Cahenzli KJ, et al. . Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe (2013) 14:559–70. 10.1016/j.chom.2013.10.004 PubMed DOI PMC
Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, et al. . Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science (2016) 351:854–7. 10.1126/science.aad8588 PubMed DOI
Schwarzer M, Repa A, Daniel C, Schabussova I, Hrncir T, Pot B, et al. . Neonatal colonization of mice with Lactobacillus plantarum producing the aeroallergen Bet v 1 biases towards Th1 and T-regulatory responses upon systemic sensitization. Allergy (2011) 66:368–75. 10.1111/j.1398-9995.2010.02488.x PubMed DOI
Šrůtková D, Spanova A, Spano M, Dráb V, Schwarzer M, Kozaková H, et al. . Efficiency of PCR-based methods in discriminating Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp infantis strains of human origin J Microbiol Methods (2011) 87:10–6. 10.1016/j.mimet.2011.06.014 PubMed DOI
Schwarzer M, Srutkova D, Hermanova P, Leulier F, Kozakova H, Schabussova I. Diet matters: endotoxin in the diet impacts the level of allergic sensitization in germ-free mice. PLoS ONE (2017) 12:e0167786. 10.1371/journal.pone.0167786 PubMed DOI PMC
Golias J, Schwarzer M, Wallner M, Kverka M, Kozakova H, Srutkova D, et al. . Heat-induced structural changes affect OVA-antigen processing and reduce allergic response in mouse model of food allergy. PLoS ONE (2012) 7:e37156. 10.1371/annotation/53227638-162d-477c-a487-ad856854d823 PubMed DOI PMC
Scott CL, Bain CC, Mowat AM. Isolation and identification of intestinal myeloid cells. Methods Mol Biol. (2017) 1559:223–39. 10.1007/978-1-4939-6786-5_15 PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (2001) 25:402–8. 10.1006/meth.2001.1262 PubMed DOI
Okayama Y, Kawakami T. Development, migration, and survival of mast cells. Immunol Res. 34:97–115. 10.1385/IR:34:2:97 PubMed DOI PMC
Chatterjea D, Wetzel A, Mack M, Engblom C, Allen J, Mora-Solano C, Chatterjea D, et al. . Mast cell degranulation mediates compound 48/80-induced hyperalgesia in mice. Biochem Biophys Res Commun. (2012) 425:237–43. 10.1016/j.bbrc.2012.07.074 PubMed DOI PMC
Hill DA, Siracusa MC, Abt MC, Kim BS, Kobuley D, Kubo M, et al. . Commensal bacteria–derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med. (2012) 18:538–46. 10.1038/nm.2657 PubMed DOI PMC
Rodriguez B, Prioult G, Bibiloni R, Nicolis I, Mercenier A, Butel MJ, et al. . Germ-free status and altered caecal subdominant microbiota are associated with a high susceptibility to cow's milk allergy in mice. FEMS Microbiol Ecol. (2011) 76:133–44. 10.1111/j.1574-6941.2010.01035.x PubMed DOI
Anjuère F, Luci C, Lebens M, Rousseau D, Hervouet C, Milon G, et al. . In vivo adjuvant-induced mobilization and maturation of gut dendritic cells after oral administration of cholera toxin. J Immunol. (2004) 173:5103–11. 10.4049/jimmunol.173.8.5103 PubMed DOI
Mattsson J, Schön K, Ekman L, Fahlén-Yrlid L, Yrlid U, Lycke NY. Cholera toxin adjuvant promotes a balanced Th1/Th2/Th17 response independently of IL-12 and IL-17 by acting on Gsalpha in CD11b(+) DCs. Mucosal Immunol. (2015) 8:815–27. 10.1038/mi.2014.111 PubMed DOI
Osterfeld H, Ahrens R, Strait R, Finkelman FD, Renauld JC, Hogan SP. Differential roles for the IL-9/IL-9 receptor ??-chain pathway in systemic and oral antigen-induced anaphylaxis. J Allergy Clin Immunol. (2010) 125:469–76.e462. 10.1016/j.jaci.2009.09.054 PubMed DOI PMC
Yamaki K, Yoshino S. Preventive and therapeutic effects of rapamycin, a mammalian target of rapamycin inhibitor, on food allergy in mice. Allergy (2012) 67:1259–70. 10.1111/all.12000 PubMed DOI
Gupta RK, Gupta K, Sharma A, Das M, Ansari IA, Dwivedi PD. Maillard reaction in food allergy: pros and cons. Crit Rev Food Sci Nutr. (2018) 58:208–26. 10.1080/10408398.2016 PubMed DOI
Smith PK. Do advanced glycation end-products cause food allergy? Curr Opin Allergy Clin Immunol. (2017) 17:325–31. 10.1097/ACI.0000000000000385 PubMed DOI
Meslin JC, Wal JM, Rochet V. Histamine and mast cell distribution in the intestinal wall of the germ free and conventional rats. Influence of the mode of sterilization of the diet. Agents Actions (1990) 29:131–7. 10.1007/BF01966437 PubMed DOI
Dahlin JS, Hallgren J. Mast cell progenitors: origin, development and migration to tissues. Mol Immunol. (2015) 63:9–17. 10.1016/j.molimm.2014.01.018 PubMed DOI
Rigaux P, Daniel C, Hisbergues M, Muraille E, Hols P, Pot B, et al. . Immunomodulatory properties of Lactobacillus plantarum and its use as a recombinant vaccine against mite allergy. Allergy (2009) 64:406–14. 10.1111/j.1398-9995.2008.01825.x PubMed DOI
Schabussova I, Hufnagl K, Wild C, Nutten S, Zuercher AW, Mercenier A, et al. . Distinctive anti-allergy properties of two probiotic bacterial strains in a mouse model of allergic poly-sensitization. Vaccine (2011) 29:1981–90. 10.1016/j.vaccine.2010.12.101 PubMed DOI
Srutkova D, Schwarzer M, Hudcovic T, Zakostelska Z, Drab V, Spanova A, et al. . Bifidobacterium longum CCM 7952 promotes epithelial barrier function and prevents acute DSS-induced colitis in strictly strain-specific manner. PLoS ONE (2015) 10:e0134050. 10.1371/journal.pone.0134050 PubMed DOI PMC