Viability Status-Dependent Effect of Bifidobacterium longum ssp. longum CCM 7952 on Prevention of Allergic Inflammation in Mouse Model
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34354710
PubMed Central
PMC8329652
DOI
10.3389/fimmu.2021.707728
Knihovny.cz E-zdroje
- Klíčová slova
- Bifidobacterium, Ovalbumin sensitization, allergy, heat inactivation, intranasal administration, probiotic,
- MeSH
- alergie * MeSH
- Bifidobacterium * MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- probiotika * MeSH
- viabilita buněk * MeSH
- zánět * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The classical definition of probiotics states that bacteria must be alive to be beneficial for human organism. However, recent reports show that inactivated bacteria or their effector molecules can also possess such properties. In this study, we investigated the physical and immunomodulatory properties of four Bifidobacterium strains in the heat-treated (HT) and untreated (UN) forms. We showed that temperature treatment of bacteria changes their size and charge, which affects their interaction with epithelial and immune cells. Based on the in vitro assays, we observed that all tested strains reduced the level of OVA-induced IL-4, IL-5, and IL-13 in the spleen culture of OVA-sensitized mice. We selected Bifidobacterium longum ssp. longum CCM 7952 (Bl 7952) for further analysis. In vivo experiments confirmed that untreated Bl 7952 exhibited allergy-reducing properties when administered intranasally to OVA-sensitized mice, which manifested in significant suppression of airway inflammation. Untreated Bl 7952 decreased local and systemic levels of Th2 related cytokines, OVA-specific IgE antibodies and simultaneously inhibited airway eosinophilia. In contrast, heat-treated Bl 7952 was only able to reduce IL-4 levels in the lungs and eosinophils in bronchoalveolar lavage, but increased neutrophil and macrophage numbers. We demonstrated that the viability status of Bl 7952 is a prerequisite for the beneficial effects of bacteria, and that heat treatment reduces but does not completely abolish these properties. Further research on bacterial effector molecules to elucidate the beneficial effects of probiotics in the prevention of allergic diseases is warranted.
Zobrazit více v PubMed
Loh W, Tang MLK. The Epidemiology of Food Allergy in the Global Context. Int J Environ Res Public Health (2018) 15(9):2043. 10.3390/ijerph15092043 PubMed DOI PMC
https://www.who.int/en/news-room/fact-sheets/detail/asthma, date: 11.03.2021, 12 am.
Jordakieva G, Jensen-Jarolim E. The Impact of Allergen Exposure and Specific Immunotherapy on Circulating Blood Cells in Allergic Rhinitis. World Allergy Organ J (2018) 11:1–13. 10.1186/s40413-018-0197-0 PubMed DOI PMC
Roan F, Obata-Ninomiya K, Ziegler SF. Epithelial Cell–Derived Cytokines: More Than Just Signaling the Alarm. J Clin Invest (2019) 129:1441–51. 10.1172/JCI124606 PubMed DOI PMC
Chan BCL, Lam CWK, Tam LS, Wong CK. IL33: Roles in Allergic Inflammation and Therapeutic Perspectives. Front Immunol (2019) 10:364. 10.3389/fimmu.2019.00364 PubMed DOI PMC
Halim TYF, Steer CA, Mathä L, Gold MJ, Martinez-Gonzalez I, McNagny KM, et al. . Group 2 Innate Lymphoid Cells are Critical for the Initiation of Adaptive T Helper 2 Cell-Mediated Allergic Lung Inflammation. Immunity (2014) 40:425–35. 10.1016/j.immuni.2014.01.011 PubMed DOI PMC
Tashiro H, Shore SA. The Gut Microbiome and Ozone-Induced Airway Hyperresponsiveness: Mechanisms and Therapeutic Prospects. Am J Respir Cell Mol Biol (2020) 64(3):1–46. 10.1165/rcmb.2020-0288tr PubMed DOI
Raftis EJ, Delday MI, Cowie P, McCluskey SM, Singh MD, Ettorre A, et al. . Bifidobacterium Breve MRx0004 Protects Against Airway Inflammation in a Severe Asthma Model by Suppressing Both Neutrophil and Eosinophil Lung Infiltration. Sci Rep (2018) 8:1–13. 10.1038/s41598-018-30448-z PubMed DOI PMC
Li L, Fang Z, Lee YK, Zhao J, Zhang H, Lu W, et al. . Prophylactic Effects of Oral Administration of: Lactobacillus Casei on House Dust Mite-Induced Asthma in Mice. Food Funct (2020) 11:9272–84. 10.1039/d0fo01363c PubMed DOI
Pellaton C, Nutten S, Thierry AC, Boudousquié C, Barbier N, Blanchard C, et al. . Intragastric and Intranasal Administration of Lactobacillus Paracasei NCC2461 Modulates Allergic Airway Inflammation in Mice. Int J Inflam (2012) 2012:1–8. 10.1155/2012/686739 PubMed DOI PMC
Spacova I, Petrova MI, Fremau A, Pollaris L, Vanoirbeek J, Ceuppens JL, et al. . Intranasal Administration of Probiotic Lactobacillus Rhamnosus GG Prevents Birch Pollen-Induced Allergic Asthma in a Murine Model. Allergy Eur J Allergy Clin Immunol (2019) 74:100–10. 10.1111/all.13502 PubMed DOI
De Boeck I, Spacova I, Vanderveken OM, Lebeer S. Lactic Acid Bacteria as Probiotics for the Nose? Microb Biotechnol (2021) 0:1–11. 10.1111/1751-7915.13759 PubMed DOI PMC
Yelin I, Flett KB, Merakou C, Mehrotra P, Stam J, Snesrud E, et al. . Genomic and Epidemiological Evidence of Bacterial Transmission From Probiotic Capsule to Blood in ICU Patients. Nat Med (2019) 25:1728–32. 10.1038/s41591-019-0626-9 PubMed DOI PMC
Avcin SL, Pokorn M, Kitanovski L, Premru MM, Jazbec J. Bifidobacterium Breve Sepsis in Child With High-Risk Acute Lymphoblastic Leukemia. Emerg Infect Dis (2015) 21:1674–5. 10.3201/eid2109.150097 PubMed DOI PMC
Esaiassen E, Hjerde E, Cavanagh JP, Simonsen GS, Klingenberg C. Bifidobacterium Bacteremia: Clinical Characteristics and a Genomic Approach to Assess Pathogenicity. J Clin Microbiol (2017) 55:2234–48. 10.1128/JCM.00150-17 PubMed DOI PMC
Williams N. Probiotics. Am J Heal Syst Pharm (2010) 67:449–58. 10.2146/ajhp090168 PubMed DOI
Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. . The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat Rev Gastroenterol Hepatol (2014) 11:506–14. 10.1038/nrgastro.2014.66 PubMed DOI
Aguilar-Toalá JE, Garcia-Varela R, Garcia HS, Mata-Haro V, González-Córdova AF, Vallejo-Cordoba B, et al. . Postbiotics: An Evolving Term Within the Functional Foods Field. Trends Food Sci Technol (2018) 75:105–14. 10.1016/J.TIFS.2018.03.009 DOI
Kumpu M, Kekkonen RA, Korpela R, Tynkkynen S, Järvenpää S, Kautiainen H, et al. . Effect of Live and Inactivated Lactobacillus Rhamnosus GG on Experimentally Induced Rhinovirus Colds: Randomised, Double Blind, Placebo-Controlled Pilot Trial. Benef Microbes (2015) 6:631–9. 10.3920/BM2014.0164 PubMed DOI
Lopez M, Li N, Kataria J, Russell M, Neu J. Live and Ultraviolet-Inactivated Lactobacillus Rhamnosus GG Decrease Flagellin-Induced Interleukin-8 Production in Caco-2 Cells. J Nutr (2008) 138:2264–8. 10.3945/jn.108.093658 PubMed DOI
Pyclik M, Srutkova D, Schwarzer M, Górska S. Bifidobacteria Cell Wall-Derived Exo-Polysaccharides, Lipoteichoic Acids, Peptidoglycans, Polar Lipids and Proteins – Their Chemical Structure and Biological Attributes. Int J Biol Macromol (2020) 147:333–49. 10.1016/j.ijbiomac.2019.12.227 PubMed DOI
Zhu L, Shimada T, Chen R, Lu M, Zhang Q, Lu W, et al. . Effects of Lysed Enterococcus Faecalis FK-23 on Experimental Allergic Rhinitis in a Murine Model. J BioMed Res (2012) 26:226–34. 10.7555/JBR.26.20120023 PubMed DOI PMC
Lim LH, Li HY, Huang CH, Lee BW, Lee YK, Chua KY. The Effects of Heat-Killed Wild-Type Lactobacillus Casei Shirota on Allergic Immune Responses in an Allergy Mouse Model. Int Arch Allergy Immunol (2009) 148:297–304. 10.1159/000170383 PubMed DOI
Piqué N, Berlanga M, Miñana-Galbis D. Health Benefits of Heat-Killed (Tyndallized) Probiotics: An Overview. Int J Mol Sci (2019) 20(10):2534. 10.3390/ijms20102534 PubMed DOI PMC
Drinić M, Wagner A, Sarate P, Zwicker C, Korb E, Loupal G, et al. . Toxoplasma Gondii Tachyzoite-Extract Acts as a Potent Immunomodulator Against Allergic Sensitization and Airway Inflammation. Sci Rep (2017) 7:1–12. 10.1038/s41598-017-15663-4 PubMed DOI PMC
Sarate PJ, Srutkova D, Geissler N, Schwarzer M, Schabussova I, Inic-Kanada A, et al. . Pre- and Neonatal Imprinting on Immunological Homeostasis and Epithelial Barrier Integrity by Escherichia Coli Nissle 1917 Prevents Allergic Poly-Sensitization in Mice. Front Immunol (2021) 11:612775. 10.3389/fimmu.2020.612775 PubMed DOI PMC
Schwarzer M, Hermanova P, Srutkova D, Golias J, Hudcovic T, Zwicker C, et al. . Germ-Free Mice Exhibit Mast Cells With Impaired Functionality and Gut Homing and do Not Develop Food Allergy. Front Immunol (2019) 10:205. 10.3389/fimmu.2019.00205 PubMed DOI PMC
Górska S, Schwarzer M, Srutkova D, Hermanova P, Brzozowska E, Kozakova H, et al. . Polysaccharides L900/2 and L900/3 Isolated From Lactobacillus Rhamnosus LOCK 0900 Modulate Allergic Sensitization to Ovalbumin in a Mouse Model. Microb Biotechnol (2017) 10:586–93. 10.1111/1751-7915.12606 PubMed DOI PMC
Koba M, Śmietana M, Brzozowska E, orska S, Janik M, Mikulic P, et al. . Bacteriophage Adhesin-Coated Long-Period Grating-Based Sensor: Bacteria Detection Specificity. J Light Technol (2016) 34:4531–6. 10.1109/JLT.2016.2532466 DOI
Schwarzer M, Srutkova D, Schabussova I, Hudcovic T, Akgün J, Wiedermann U, et al. . Neonatal Colonization of Germ-Free Mice With Bifidobacterium Longum Prevents Allergic Sensitization to Major Birch Pollen Allergen Bet V 1. Vaccine (2013) 31:5405–12. 10.1016/j.vaccine.2013.09.014 PubMed DOI
Abdel-Gadir A, Stephen-Victor E, Gerber GK, Noval Rivas M, Wang S, Harb H, et al. . Microbiota Therapy Acts via a Regulatory T Cell Myd88/Rorγt Pathway to Suppress Food Allergy. Nat Med (2019) 25:1164–74. 10.1038/s41591-019-0461-z PubMed DOI PMC
Schabussova I, Hufnagl K, Wild C, Nutten S, Zuercher AW, Mercenier A, et al. . Distinctive Anti-Allergy Properties of Two Probiotic Bacterial Strains in a Mouse Model of Allergic Poly-Sensitization. Vaccine (2011) 29:1981–90. 10.1016/j.vaccine.2010.12.101 PubMed DOI
de Almada CN, Almada CN, Martinez RCR, Sant’Ana AS. Paraprobiotics: Evidences on Their Ability to Modify Biological Responses, Inactivation Methods and Perspectives on Their Application in Foods. Trends Food Sci Technol (2016) 58:96–114. 10.1016/J.TIFS.2016.09.011 DOI
Zendeboodi F, Khorshidian N, Mortazavian AM, da Cruz AG. Probiotic: Conceptualization From a New Approach. Curr Opin Food Sci (2020) 32:103–23. 10.1016/j.cofs.2020.03.009 DOI
Doron S, Snydman DR. Risk and Safety of Probiotics. Clin Infect Dis (2015) 60:129–34. 10.1093/cid/civ085 PubMed DOI PMC
Bertelli C, Pillonel T, Torregrossa A, Prod’hom G, Julie Fischer C, Greub G, et al. . Bifidobacterium Longum Bacteremia in Preterm Infants Receiving Probiotics. Clin Infect Dis (2015) 60:924–7. 10.1093/cid/ciu946 PubMed DOI
Taddese R, Belzer C, Aalvink S, de Jonge MI Nagtegaal ID, Dutilh BE, et al. . Bacterial Zombies And Ghosts: Production Of Inactivated Gram-Positive And Gram-Negative Species With Preserved Cellular Morphology And Cytoplasmic Content. bioRxiv (2018) 458158. 10.1101/458158 PubMed DOI
Otzen DE, Sehgal P, Nesgaard LW. Alternative Membrane Protein Conformations in Alcohols. Biochemistry (2007) 46:4348–59. 10.1021/bi700091r PubMed DOI
Tomb RM, White TA, Coia JE, Anderson JG, MacGregor SJ, Maclean M. Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380-480 Nm Violet-Blue Light. Photochem Photobiol (2018) 94:445–58. 10.1111/php.12883 PubMed DOI
Piyasena P, Mohareb E, McKellar RC. Inactivation of Microbes Using Ultrasound: A Review. Int J Food Microbiol (2003) 87:207–16. 10.1016/S0168-1605(03)00075-8 PubMed DOI
Baatout S, De Boever P, Mergeay M. Temperature-Induced Changes in Bacterial Physiology as Determined by Flow Cytometry. Ann Microbiol (2005) 55:73–80.
Laskowska E, Bohdanowicz J, Kuczyńska-Wiśnik D, Matuszewska E, Kędzierska S, Taylor A. Aggregation of Heat-Shock-Denatured, Endogenous Proteins and Distribution of the IbpA/B and Fda Marker-Proteins in Escherichia Coli WT and Grpe280 Cells. Microbiology (2004) 150:247–59. 10.1099/mic.0.26470-0 PubMed DOI
Mackey B. Injured Bacteria. In: Lund M, Baird-Parker TC, Gould GW, editors. The Microbiological Safety, and Quality of Food. Gaithersburg, Md.: Aspen Publisher; (2000). p. 315–41.
Galdeano CM, Perdigón G. Role of Viability of Probiotic Strains in Their Persistence in the Gut and in Mucosal Immune Stimulation. J Appl Microbiol (2004) 97:673–81. 10.1111/j.1365-2672.2004.02353.x PubMed DOI
Liu C, Zhang X, Xiang Y, Qu X, Liu H, Liu C, et al. . Role of Epithelial Chemokines in the Pathogenesis of Airway Inflammation in Asthma (Review). Mol Med Rep (2018) 17:6935–41. 10.3892/mmr.2018.8739 PubMed DOI
Weiss G, Christensen HR, Zeuthen LH, Vogensen FK, Jakobsen M, Frøkiær H. Lactobacilli and Bifidobacteria Induce Differential Interferon-β Profiles in Dendritic Cells. Cytokine (2011) 56:520–30. 10.1016/j.cyto.2011.07.024 PubMed DOI
Schülke S. Induction of Interleukin-10 Producing Dendritic Cells as a Tool to Suppress Allergen-Specific T Helper 2 Responses. Front Immunol (2018) 9:455. 10.3389/fimmu.2018.00455 PubMed DOI PMC
Bermúdez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A. Probiotic Mechanisms of Action. Ann Nutr Metab (2012) 61:160–74. 10.1159/000342079 PubMed DOI
Fuchs B, Braun A. Modulation of Asthma and Allergy by Addressing Toll-Like Receptor 2. J Occup Med Toxicol (2008) 3:2–5. 10.1186/1745-6673-3-S1-S5 PubMed DOI PMC
Taylor RC, Richmond P, Upham JW. Toll-Like Receptor 2 Ligands Inhibit T H2 Responses to Mite Allergen. J Allergy Clin Immunol (2006) 117:1148–54. 10.1016/j.jaci.2006.02.014 PubMed DOI
Oliveira-Nascimento L, Massari P, Wetzler LM. The Role of TLR2 Ininfection and Immunity. Front Immunol (2012) 3:79. 10.3389/fimmu.2012.00079 PubMed DOI PMC
Taverniti V, Guglielmetti S. The Immunomodulatory Properties of Probiotic Microorganisms Beyond Their Viability (Ghost Probiotics: Proposal of Paraprobiotic Concept). Genes Nutr (2011) 6:261–74. 10.1007/s12263-011-0218-x PubMed DOI PMC
Srutkova D, Schwarzer M, Hudcovic T, Zakostelska Z, Drab V, Spanova A, et al. . Bifidobacterium Longum CCM 7952 Promotes Epithelial Barrier Function and Prevents Acute DSS-Induced Colitis in Strictly Strain-Specific Manner. PloS One (2015) 10(7):134050. 10.1371/journal.pone.0134050 PubMed DOI PMC
Spacova I, Van Beeck W, Seys S, Devos F, Vanoirbeek J, Vanderleyden J, et al. . Lactobacillus Rhamnosus Probiotic Prevents Airway Function Deterioration and Promotes Gut Microbiome Resilience in a Murine Asthma Model. Gut Microbes (2020) 11:1729–44. 10.1080/19490976.2020.1766345 PubMed DOI PMC
Akdis CA, Akdis M. Mechanisms of Immune Tolerance to Allergens: Role of IL-10 and Tregs. J Clin Invest (2014) 124:4678–80. 10.1172/JCI78891 PubMed DOI PMC
Corthésy B. Multi-Faceted Functions of Secretory IgA at Mucosal Surfaces. Front Immunol (2013) 4:185. 10.3389/fimmu.2013.00185 PubMed DOI PMC
Smeekens JM, Johnson-Weaver BT, Hinton AL, Azcarate-Peril MA, Moran TP, Immormino RM, et al. . Fecal IgA, Antigen Absorption, and Gut Microbiome Composition Are Associated With Food Antigen Sensitization in Genetically Susceptible Mice. Front Immunol (2021) 11:599637. 10.3389/fimmu.2020.599637 PubMed DOI PMC
Gloudemans AK, Lambrecht BN, Smits HH. Potential of Immunoglobulin A to Prevent Allergic Asthma Information. Clin Dev Immunol (2013) 2013:542091. 10.1155/2013/542091 PubMed DOI PMC
Kim WJ, Choi IS, Kim CS, Lee JH, Kang HW. Relationship Between Serum IgA Level and Allergy/Asthma. Korean J Intern Med (2017) 32:137–45. 10.3904/kjim.2014.160 PubMed DOI PMC
Dzidic M, Abrahamsson TR, Artacho A, Björkstén B, Collado MC, Mira A, et al. . Aberrant IgA Responses to the Gut Microbiota During Infancy Precede Asthma and Allergy Development. J Allergy Clin Immunol (2017) 139:1017–1025.e14. 10.1016/j.jaci.2016.06.047 PubMed DOI
Frossard CP, Hauser C, Eigenmann PA. Antigen-Specific Secretory IgA Antibodies in the Gut are Decreased in a Mouse Model of Food Allergy. J Allergy Clin Immunol (2004) 114:377–82. 10.1016/j.jaci.2004.03.040 PubMed DOI