Genetic background and microbiome drive susceptibility to epicutaneous sensitization and food allergy in adjuvant-free mouse model

. 2024 ; 15 () : 1509691. [epub] 20250129

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39944558

BACKGROUND: The dual allergen exposure hypothesis states that sensitization to food antigens occurs through a damaged skin barrier in individuals with no previous oral tolerance to certain foods. However, the resulting allergic reaction could depend on factors such as the host's genetic predisposition as well as the skin and gut microbiota. METHODS: Specific-pathogen-free BALB/c and C57BL/6 and germ-free (GF) BALB/c mice were epicutaneously sensitized with ovalbumin (OVA) via dorsal tape-stripped skin and challenged with OVA by intragastric gavage. The development of food allergy (FA) symptoms, the Th2 and mast cell immune response and differences in the skin and gut microbiota were investigated. RESULTS: BALB/c mice, but not C57BL/6 mice, showed severe clinical signs of FA (hypothermia, diarrhea) as well as a stronger serum antibody response and Th2 cytokine secretion in the spleen and jejunum after OVA-treatment. The increased mast cell count correlated with higher MCPT-1 production and histidine decarboxylase mRNA expression in the jejunum of these mice. The 16S rRNA sequencing analysis revealed lower abundance of short-chain fatty acids producing bacteria in the gut microbiome of OVA-treated BALB/c mice. Changes in the β-diversity of the gut microbiome reflect both the genetic background as well as the OVA treatment of experimental mice. Compared to SPF mice, GF mice developed more severe anaphylactic hypothermia but no diarrhea, although they had a higher mast cell count, increased MCPT-1 production in the jejunum and serum, and increased arachidonate 5-lipoxygenase mRNA expression. CONCLUSIONS: We show that the BALB/c mice are a mouse strain of choice for model of adjuvant-free epicutaneous sensitization through the disrupted skin barrier and following food allergy development. Our results highlight the significant influence of genetic background and microbiota on food allergy susceptibility, emphasizing the complex interplay between these factors in the allergic response.

Zobrazit více v PubMed

Sindher SB, Long A, Chin AR, Hy A, Sampath V, Nadeau KC, et al. . Food allergy, mechanisms, diagnosis and treatment: Innovation through a multi-targeted approach. Allergy. (2022) 77:2937–48. doi: 10.1111/all.v77.10 PubMed DOI

Mendonca CE, Andreae DA. Food allergy. Med Clin. (2024) 108:655–70. doi: 10.1016/j.mcna.2023.08.003 PubMed DOI

Drønen EK, Namork E, Dirven H, Nygaard UC. Suspected gut barrier disruptors and development of food allergy: Adjuvant effects and early immune responses. Front Allergy. (2022) 3. doi: 10.3389/falgy.2022.1029125 PubMed DOI PMC

Sbihi H, Boutin R, Cutler C, Suen M, Finlay BB, Turvey SE. Thinking bigger: How early-life environmental exposures shape the gut microbiome and influence the development of asthma and allergic disease. Allergy. (2019) 74:2103–15. doi: 10.1111/all.v74.11 PubMed DOI

Martin PE, Eckert JK, Koplin JJ, Lowe AJ, Gurrin LC, Dharmage SC, et al. . Which infants with eczema are at risk of food allergy? Results from a population-based cohort. Clin Exp Allergy. (2015) 45:255–64. doi: 10.1111/cea.2014.45.issue-1 PubMed DOI

Peters RL, Krawiec M, Koplin JJ, Santos AF. Update on food allergy. Pediatr Allergy Immunol. (2021) 32:647–57. doi: 10.1111/pai.13443 PubMed DOI PMC

Lozano-Ojalvo D, Berin C, Tordesillas L. Immune basis of allergic reactions to food. J Investig Allergol Clin Immunol. (2019) 29:1–14. doi: 10.18176/jiaci.0355 PubMed DOI

Yu G, Jiang Y, Zhang S, Liu P, Wang S, Sheng H, et al. . Comparison of immune responses and intestinal flora in epicutaneously sensitized BALB/c or C57BL/6 mouse models of food allergy. Food Sci Hum Wellness. (2024) 13:668–80. doi: 10.26599/FSHW.2022.9250056 DOI

Ubags ND, Trompette A, Pernot J, Nibbering B, Wong NC, Pattaroni C, et al. . Microbiome-induced antigen-presenting cell recruitment coordinates skin and lung allergic inflammation. J Allergy Clin Immunol. (2021) 147:1049–62. doi: 10.1016/j.jaci.2020.06.030 PubMed DOI

Brough HA, Nadeau KC, Sindher SB, Alkotob SS, Chan S, Bahnson HT, et al. . Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented? Allergy. (2020) 75:2185–205. doi: 10.1111/all.14304 PubMed DOI PMC

Davis KL, Claudio-Etienne E, Frischmeyer-Guerrerio PA. Atopic dermatitis and food allergy: More than sensitization. Mucosal Immunol. (2024) 17(5):1128–40. doi: 10.1016/j.mucimm.2024.06.005 PubMed DOI PMC

Wang Z, Mascarenhas N, Eckmann L, Miyamoto Y, Sun X, Kawakami T, et al. . Skin microbiome promotes mast cell maturation by triggering stem cell factor production in keratinocytes. J Allergy Clin Immunol. (2017) 139:1205–16. doi: 10.1016/j.jaci.2016.09.019 PubMed DOI PMC

Schwarzer M, Hermanova P, Srutkova D, Golias J, Hudcovic T, Zwicker C, et al. . Germ-free mice exhibit mast cells with impaired functionality and gut homing and do not develop food allergy. Front Immunol. (2019) 10. doi: 10.3389/fimmu.2019.00205 PubMed DOI PMC

Wilkins LJ, Monga M, Miller AW. Defining dysbiosis for a cluster of chronic diseases. Sci Rep. (2019) 9:12918. doi: 10.1038/s41598-019-49452-y PubMed DOI PMC

Paller AS, Kong HH, Seed P, Naik S, Scharschmidt TC, Gallo RL, et al. . The microbiome in patients with atopic dermatitis. J Allergy Clin Immunol. (2019) 143:26–35. doi: 10.1016/j.jaci.2018.11.015 PubMed DOI PMC

Schülke S, Albrecht M. Mouse models for food allergies: where do we stand? Cells. (2019) 8:546. doi: 10.3390/cells8060546 PubMed DOI PMC

Paolucci M, Homère V, Waeckerle-Men Y, Wuillemin N, Bieli D, Pengo N, et al. . Strain matters in mouse models of peanut-allergic anaphylaxis: Systemic IgE-dependent and Ara h 2-dominant sensitization in C3H mice. Clin Exp Allergy. (2023) 53:550–60. doi: 10.1111/cea.14279 PubMed DOI

Liu T, Navarro S, Lopata AL. Current advances of murine models for food allergy. Mol Immunol. (2016) 70:104–17. doi: 10.1016/j.molimm.2015.11.011 PubMed DOI

Bartnikas LM, Gurish MF, Burton OT, Leisten S, Janssen E, Oettgen HC, et al. . Epicutaneous sensitization results in IgE-dependent intestinal mast cell expansion and food-induced anaphylaxis. J Allergy Clin Immunol. (2013) 131:451–460.e6. doi: 10.1016/j.jaci.2012.11.032 PubMed DOI PMC

Leyva-Castillo JM, Galand C, Kam C, Burton O, Gurish M, Musser MA, et al. . Mechanical skin injury promotes food anaphylaxis by driving intestinal mast cell expansion. Immunity. (2019) 50:1262–1275.e4. doi: 10.1016/j.immuni.2019.03.023 PubMed DOI PMC

Kellogg C, Smogorzewski J. Update on atopic dermatitis. Adv Pediatr. (2023) 70:157–70. doi: 10.1016/j.yapd.2023.03.006 PubMed DOI

Tosa N, Yoshimatsu K, Takahashi M, Arikawa J. Comparison of immune response in mice sensitized to an animal allergen, Can f 1, and to a food allergen, ovalbumin. BioMed Res. (2019) 40:9–15. doi: 10.2220/biomedres.40.9 PubMed DOI

Van Hove CL, Maes T, Cataldo DD, Guéders MM, Palmans E, Joos GF, et al. . Comparison of acute inflammatory and chronic structural asthma-like responses between C57BL/6 and BALB/c mice. Int Arch Allergy Immunol. (2009) 149:195–207. doi: 10.1159/000199715 PubMed DOI

Nagashima M, Koyanagi M, Arimura Y. Comparative analysis of bone marrow-derived mast cell differentiation in C57BL/6 and BALB/c mice. Immunol Invest. (2019) 48:303–20. doi: 10.1080/08820139.2018.1523924 PubMed DOI

Li XM, Serebrisky D, Lee SY, Huang CK, Bardina L, Schofield BH, et al. . A murine model of peanut anaphylaxis: T- and B-cell responses to a major peanut allergen mimic human responses. J Allergy Clin Immunol. (2000) 106:150–8. doi: 10.1067/mai.2000.107395 PubMed DOI

Proust B, Astier C, Jacquenet S, Ogier V, Magueur E, Roitel O, et al. . A single oral sensitization to peanut without adjuvant leads to anaphylaxis in mice. Int Arch Allergy Immunol. (2008) 146:212–8. doi: 10.1159/000115889 PubMed DOI

Bryant CD. The blessings and curses of C57BL/6 substrains in mouse genetic studies. Ann N Y Acad Sci. (2011) 1245:31–3. doi: 10.1111/j.1749-6632.2011.06325.x PubMed DOI PMC

Kazemi S, Danisman E, Epstein MM. Animal models for the study of food allergies. Curr Protoc. (2023) 3:e685. doi: 10.1002/cpz1.v3.3 PubMed DOI

Castan L, Bøgh KL, Maryniak NZ, Epstein MM, Kazemi S, O’Mahony L, et al. . Overview of in vivo and ex vivo endpoints in murine food allergy models: Suitable for evaluation of the sensitizing capacity of novel proteins? Allergy. (2020) 75:289–301. doi: 10.1111/all.13943 PubMed DOI PMC

Wang LF, Lin JY, Hsieh KH, Lin RH. Epicutaneous exposure of protein antigen induces a predominant Th2-like response with high IgE production in mice. J Immunol. (1996) 156:4079–82. doi: 10.4049/jimmunol.156.11.4079 PubMed DOI

Schwarzer M, Repa A, Daniel C, Schabussova I, Hrncir T, Pot B, et al. . Neonatal colonization of mice with Lactobacillus plantarum producing the aeroallergen Bet v 1 biases towards Th1 and T-regulatory responses upon systemic sensitization: Neonatal colonization with L. plantarum producing Bet v 1. Allergy. (2011) 66:368–75. doi: 10.1111/j.1398-9995.2010.02488.x PubMed DOI

Górska S, Schwarzer M, Srutkova D, Hermanova P, Brzozowska E, Kozakova H, et al. . Polysaccharides L900/2 and L900/3 isolated from Lactobacillus rhamnosus LOCK 0900 modulate allergic sensitization to ovalbumin in a mouse model. Microb Biotechnol. (2017) 10:586–93. doi: 10.1111/1751-7915.12606 PubMed DOI PMC

Stehlikova Z, Kostovcik M, Kostovcikova K, Kverka M, Juzlova K, Rob F, et al. . Dysbiosis of skin microbiota in psoriatic patients: co-occurrence of fungal and bacterial communities. Front Microbiol. (2019) 10:438. doi: 10.3389/fmicb.2019.00438 PubMed DOI PMC

Stehlikova Z, Kostovcikova K, Kverka M, Rossmann P, Dvorak J, Novosadova I, et al. . Crucial role of microbiota in experimental psoriasis revealed by a gnotobiotic mouse model. Front Microbiol. (2019) 10:236. doi: 10.3389/fmicb.2019.00236 PubMed DOI PMC

Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. . Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. (2019) 37:852–7. doi: 10.1038/s41587-019-0209-9 PubMed DOI PMC

Bisanz JE. qiime2R: importing QIIME2 artifacts and associated data into R sessions. Version 0.99. 2018 Mar 19; (2018) 13. Available online at: https://github.com/jbisanz/qiime2R

Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. (1995) 57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x DOI

Team RC. R A language and environment for statistical computing. R Foundation for Statistical. Computing. Vienna, Austria: (2020) Available online at: https://www.R-project.org/.

Kolde R. pheatmap: Pretty Heatmaps. (2019) R package version 1.0.12; 726. doi: 10.32614/CRAN.package.pheatmap DOI

Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Software. (2008) 25:1–18. doi: 10.18637/jss.v025.i01 DOI

Kassambara A, Mundt F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. (2020) R Package Version 1.0.17. Available online at: https://CRAN.R-project.org/package=factoextra

Dwyer DF, Barrett NA, Austen KF. Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat Immunol. (2016) 17:878–87. doi: 10.1038/ni.3445 PubMed DOI PMC

van de Veen W, Akdis M. The use of biologics for immune modulation in allergic disease. J Clin Invest. (2019) 129:1452–62. doi: 10.1172/JCI124607 PubMed DOI PMC

Smith AR, Knaysi G, Wilson JM, Wisniewski JA. The skin as a route of allergen exposure: part I. Immune components and mechanisms. Curr Allergy Asthma Rep. (2017) 17:6. doi: 10.1007/s11882-017-0674-5 PubMed DOI PMC

Rustemeyer T. Immunological mechanisms in allergic contact dermatitis. Curr Treat Options Allergy. (2022) 9:67–75. doi: 10.1007/s40521-022-00299-1 DOI

Zhang Q, Zhu W, Zou Z, Yu W, Gao P, Wang Y, et al. . A preliminary study in immune response of BALB/c and C57BL/6 mice with a locally allergic rhinitis model. Am J Rhinol Allergy. (2023) 37:410–8. doi: 10.1177/19458924231157619 PubMed DOI

Cardoso CR, Provinciatto PR, Godoi DF, Ferreira BR, Teixeira G, Rossi MA, et al. . IL-4 regulates susceptibility to intestinal inflammation in murine food allergy. Am J Physiol Gastrointest Liver Physiol. (2009) 296:G593–600. doi: 10.1152/ajpgi.90431.2008 PubMed DOI

Smit JJ, Willemsen K, Hassing I, Fiechter D, Storm G, van Bloois L, et al. . Contribution of classic and alternative effector pathways in peanut-induced anaphylactic responses. PloS One. (2011) 6:e28917. doi: 10.1371/journal.pone.0028917 PubMed DOI PMC

Ito R, Maruoka S, Gon Y, Katano I, Takahashi T, Ito M, et al. . Recent advances in allergy research using humanized mice. Int J Mol Sci. (2019) 20:2740. doi: 10.3390/ijms20112740 PubMed DOI PMC

Lee KI, Bae JS, Kim EH, Kim JH, Lyu L, Chung YJ, et al. . Strain-specific differences in house dust mite (Dermatophagoides farinae)-induced mouse models of allergic rhinitis. Clin Exp Otorhinolaryngol. (2020) 13:396–406. doi: 10.21053/ceo.2019.01837 PubMed DOI PMC

AtoChina EN, Beers MF, Tomer Y, Scanlon ST, Russo SJ, Panettieri RA, et al. . Attenuated allergic airway hyperresponsiveness in C57BL/6 mice is associated with enhanced surfactant protein (SP)-D production following allergic sensitization. Respir Res. (2003) 4:15. doi: 10.1186/1465-9921-4-15 PubMed DOI PMC

Fukushima A, Yamaguchi T, Ishida W, Fukata K, Taniguchi T, Liu FT, et al. . Genetic background determines susceptibility to experimental immune-mediated blepharoconjunctivitis: Comparison of Balb/c and C57BL/6 mice. Exp Eye Res. (2006) 82:210–8. doi: 10.1016/j.exer.2005.06.010 PubMed DOI

Ganeshan K, Neilsen CV, Hadsaitong A, Schleimer RP, Luo X, Bryce PJ. Impairing oral tolerance promotes allergy and anaphylaxis: A new murine food allergy model. J Allergy Clin Immunol. (2009) 123:231–238.e4. doi: 10.1016/j.jaci.2008.10.011 PubMed DOI PMC

Parkinson JE, Pearson S, Rückerl D, Allen JE, Sutherland TE. The magnitude of airway remodeling is not altered by distinct allergic inflammatory responses in BALB/c versus C57BL/6 mice but matrix composition differs. Immunol Cell Biol. (2021) 99:640–55. doi: 10.1111/imcb.12448 PubMed DOI PMC

Gueders MM, Paulissen G, Crahay C, Quesada-Calvo F, Hacha J, Van Hove C, et al. . Mouse models of asthma: a comparison between C57BL/6 and BALB/c strains regarding bronchial responsiveness, inflammation, and cytokine production. Inflammation Res. (2009) 58:845–54. doi: 10.1007/s00011-009-0054-2 PubMed DOI

Shiraishi H, Masuoka M, Ohta S, Suzuki S, Arima K, Taniguchi K, et al. . Periostin contributes to the pathogenesis of atopic dermatitis by inducing TSLP production from keratinocytes. Allergol Int. (2012) 61:563–72. doi: 10.2332/allergolint.10-OA-0297 PubMed DOI

Kodama M, Asano K, Oguma T, Kagawa S, Tomomatsu K, Wakaki M, et al. . Strain-specific phenotypes of airway inflammation and bronchial hyperresponsiveness induced by epicutaneous allergen sensitization in BALB/c and C57BL/6 mice. Int Arch Allergy Immunol. (2010) 152:67–74. doi: 10.1159/000312128 PubMed DOI

Kawasaki A, Ito N, Murai H, Yasutomi M, Naiki H, Ohshima Y. Skin inflammation exacerbates food allergy symptoms in epicutaneously sensitized mice. Allergy. (2018) 73:1313–21. doi: 10.1111/all.2018.73.issue-6 PubMed DOI

Hussain M, Borcard L, Walsh KP, Pena Rodriguez M, Mueller C, Kim BS, et al. . Basophil-derived IL-4 promotes epicutaneous antigen sensitization concomitant with the development of food allergy. J Allergy Clin Immunol. (2018) 141:223–34. doi: 10.1016/j.jaci.2017.02.035 PubMed DOI

Noti M, Kim BS, Siracusa MC, Rak GD, Kubo M, Moghaddam AE, et al. . Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin–basophil axis. J Allergy Clin Immunol. (2014) 133:1390–1399.e6. doi: 10.1016/j.jaci.2014.01.021 PubMed DOI PMC

Prescott SL, Larcombe DL, Logan AC, West C, Burks W, Caraballo L, et al. . The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ J. (2017) 10:29. doi: 10.1186/s40413-017-0160-5 PubMed DOI PMC

Dębińska A, Sozańska B. Epicutaneous sensitization and food allergy: preventive strategies targeting skin barrier repair—Facts and challenges. Nutrients. (2023) 15:1070. doi: 10.3390/nu15051070 PubMed DOI PMC

Sroka-Tomaszewska J, Trzeciak M. Molecular mechanisms of atopic dermatitis pathogenesis. Int J Mol Sci. (2021) 22:4130. doi: 10.3390/ijms22084130 PubMed DOI PMC

Rodriguez B, Prioult G, Bibiloni R, Nicolis I, Mercenier A, Butel MJ, et al. . Germ-free status and altered caecal subdominant microbiota are associated with a high susceptibility to cow’s milk allergy in mice. FEMS Microbiol Ecol. (2011) 76:133–44. doi: 10.1111/j.1574-6941.2010.01035.x PubMed DOI

Liu Y, Ma Y, Chen Z, Zou C, Liu W, Yang L, et al. . Depolymerized sulfated galactans from Eucheuma serra ameliorate allergic response and intestinal flora in food allergic mouse model. Int J Biol Macromol. (2021) 166:977–85. doi: 10.1016/j.ijbiomac.2020.10.254 PubMed DOI

Huang CH, Lu SY, Tsai WC. Relevant fecal microbes isolated from mice with food allergy elicited intestinal cytokine/chemokine network and T-cell immune responses. Biosci Microbiota Food Health. (2020) 39:234–42. doi: 10.12938/bmfh.2020-014 PubMed DOI PMC

Chen C, Sang Z, Xie Q, Xue W. Effects of hazelnut protein isolate-induced food allergy on the gut microenvironment in a BALB/c mouse model. Food Funct. (2023) 14:8761–74. doi: 10.1039/D3FO02324A PubMed DOI

Gu S, Xie Q, Chen C, Liu C, Xue W. Gut microbial signatures associated with peanut allergy in a BALB/c mouse model. Foods. (2022) 11:1395. doi: 10.3390/foods11101395 PubMed DOI PMC

Xu J, Ye Y, Ji J, Sun J, Wang JS, Sun X. Untargeted metabolomic profiling reveals changes in gut microbiota and mechanisms of its regulation of allergy in OVA-sensitive BALB/c mice. J Agric Food Chem. (2022) 70:3344–56. doi: 10.1021/acs.jafc.1c07482 PubMed DOI

Ćesić D, Lugović Mihić L, Ozretić P, Lojkić I, Buljan M, Šitum M, et al. . Association of gut lachnospiraceae and chronic spontaneous urticaria. Life. (2023) 13:1280. doi: 10.3390/life13061280 PubMed DOI PMC

Yang Z, Chen Z, Lin X, Yao S, Xian M, Ning X, et al. . Rural environment reduces allergic inflammation by modulating the gut microbiota. Gut Microbes. (2022) 14:2125733. doi: 10.1080/19490976.2022.2125733 PubMed DOI PMC

Ma RX, Hu JQ, Fu W, Zhong J, Cao C, Wang CC, et al. . Intermittent fasting protects against food allergy in a murine model via regulating gut microbiota. Front Immunol. (2023) 14. doi: 10.3389/fimmu.2023.1167562 PubMed DOI PMC

Luu M, Monning H, Visekruna A. Exploring the molecular mechanisms underlying the protective effects of microbial SCFAs on intestinal tolerance and food allergy. Front Immunol. (2020) 11. doi: 10.3389/fimmu.2020.01225 PubMed DOI PMC

Feehley T, Plunkett CH, Bao R, Choi Hong SM, Culleen E, Belda-Ferre P, et al. . Healthy infants harbor intestinal bacteria that protect against food allergy. Nat Med. (2019) 25:448–53. doi: 10.1038/s41591-018-0324-z PubMed DOI PMC

Liu J, Huang X, Chen C, Wang Z, Huang Z, Qin M, et al. . Identification of colorectal cancer progression-associated intestinal microbiome and predictive signature construction. J Transl Med. (2023) 21:373. doi: 10.1186/s12967-023-04119-1 PubMed DOI PMC

Stark KG, Falkowski NR, Brown CA, McDonald RA, Huffnagle GB. Contribution of the microbiome, environment, and genetics to mucosal type 2 immunity and anaphylaxis in a murine food allergy model. Front Allergy. (2022) 3. doi: 10.3389/falgy.2022.851993 PubMed DOI PMC

Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, et al. . Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci. (2014) 111:13145–50. doi: 10.1073/pnas.1412008111 PubMed DOI PMC

Anjuère F, Luci C, Lebens M, Rousseau D, Hervouet C, Milon G, et al. . In vivo adjuvant-induced mobilization and maturation of gut dendritic cells after oral administration of cholera Toxin1. J Immunol. (2004) 173:5103–11. doi: 10.4049/jimmunol.173.8.5103 PubMed DOI

Mattsson J, Schön K, Ekman L, Fahlén-Yrlid L, Yrlid U, Lycke NY. Cholera toxin adjuvant promotes a balanced Th1/Th2/Th17 response independently of IL-12 and IL-17 by acting on Gsα in CD11b+ DCs. Mucosal Immunol. (2015) 8:815–27. doi: 10.1038/mi.2014.111 PubMed DOI

Hong SW, O E, Lee JY, Lee M, Han D, Ko HJ, et al. . Food antigens drive spontaneous IgE elevation in the absence of commensal microbiota. Sci Adv. (2019) 5:eaaw1507. doi: 10.1126/sciadv.aaw1507 PubMed DOI PMC

Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, Wlodarska M, et al. . Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. (2012) 13:440–7. doi: 10.1038/embor.2012.32 PubMed DOI PMC

Arildsen AW, Zachariassen LF, Krych L, Hansen AK, Hansen CHF. Delayed gut colonization shapes future allergic responses in a murine model of atopic dermatitis. Front Immunol. (2021) 12. doi: 10.3389/fimmu.2021.650621 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace