Microbiota modulates the steroid response to acute immune stress in male mice

. 2024 ; 15 () : 1330094. [epub] 20240201

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38361932

Microbiota plays a role in shaping the HPA-axis response to psychological stressors. To examine the role of microbiota in response to acute immune stressor, we stimulated the adaptive immune system by anti-CD3 antibody injection and investigated the expression of adrenal steroidogenic enzymes and profiling of plasma corticosteroids and their metabolites in specific pathogen-free (SPF) and germ-free (GF) mice. Using UHPLC-MS/MS, we showed that 4 hours after immune challenge the plasma levels of pregnenolone, progesterone, 11-deoxycorticosterone, corticosterone (CORT), 11-dehydroCORT and their 3α/β-, 5α-, and 20α-reduced metabolites were increased in SPF mice, but in their GF counterparts, only CORT was increased. Neither immune stress nor microbiota changed the mRNA and protein levels of enzymes of adrenal steroidogenesis. In contrast, immune stress resulted in downregulated expression of steroidogenic genes (Star, Cyp11a1, Hsd3b1, Hsd3b6) and upregulated expression of genes of the 3α-hydroxysteroid oxidoreductase pathway (Akr1c21, Dhrs9) in the testes of SPF mice. In the liver, immune stress downregulated the expression of genes encoding enzymes with 3β-hydroxysteroid dehydrogenase (HSD) (Hsd3b2, Hsd3b3, Hsd3b4, Hsd3b5), 3α-HSD (Akr1c14), 20α-HSD (Akr1c6, Hsd17b1, Hsd17b2) and 5α-reductase (Srd5a1) activities, except for Dhrs9, which was upregulated. In the colon, microbiota downregulated Cyp11a1 and modulated the response of Hsd11b1 and Hsd11b2 expression to immune stress. These data underline the role of microbiota in shaping the response to immune stressor. Microbiota modulates the stress-induced increase in C21 steroids, including those that are neuroactive that could play a role in alteration of HPA axis response to stress in GF animals.

Zobrazit více v PubMed

McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev (2007) 87:873–904. doi: 10.1152/physrev.00041.2006 PubMed DOI

Heck AL, Handa RJ. Sex differences in the hypothalamic-pituitary-adrenal axis’ response to stress: an important role for gonadal hormones. Neuropsychopharmacology (2019) 44:45–58. doi: 10.1038/s41386-018-0167-9 PubMed DOI PMC

Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, et al. . Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol (2016) 6:603–21. doi: 10.1002/cphy.c150015 PubMed DOI PMC

Hueston CM, Deak T. The inflamed axis: the interaction between stress, hormones, and the expression of inflammatory-related genes within key structures comprising the hypothalamic-pituitary-adrenal axis. Physiol Behav (2014) 124:77–91. doi: 10.1016/j.physbeh.2013.10.035 PubMed DOI

Webster JI, Sternberg EM. Role of the hypothalamic-pituitary-adrenal axis, glucocorticoids and glucocorticoid receptors in toxic sequelae of exposure to bacterial and viral products. J Endocrinol (2004) 181:207–21. doi: 10.1677/joe.0.1810207 PubMed DOI

Hueston CM, Deak T. On the time course, generality, and regulation of plasma progesterone release in male rats by stress exposure. Endocrinology (2014) 155:3527–37. doi: 10.1210/en.2014-1060 PubMed DOI

Kalil B, Leite CM, Carvalho-Lima M, Anselmo-Franci JA. Role of sex steroids in progesterone and corticosterone response to acute restraint stress in rats: sex differences. Stress (2013) 16:452–60. doi: 10.3109/10253890.2013.777832 PubMed DOI

Sze Y, Gill AC, Brunton PJ. Sex-dependent changes in neuroactive steroid concentrations in the rat brain following acute swim stress. J Neuroendocrinol (2018) 30:e12644. doi: 10.1111/jne.12644 PubMed DOI PMC

Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, et al. . Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol (2009) 30:259–301. doi: 10.1016/j.yfrne.2009.05.006 PubMed DOI

Barbaccia ML, Roscetti G, Trabucchi M, Purdy RH, Mostallino MC, Concas A, et al. . The effects of inhibitors of GABAergic transmission and stress on brain and plasma allopregnanolone concentrations. Br J Pharmacol (1997) 120:1582–8. doi: 10.1038/sj.bjp.0701046 PubMed DOI PMC

Genazzani AR, Petraglia F, Bernardi F, Casarosa E, Salvestroni C, Tonetti A, et al. . Circulating levels of allopregnanolone in humans: gender, age, and endocrine influences. J Clin Endocrinol Metab (1998) 83:2099–103. doi: 10.1210/jcem.83.6.4905 PubMed DOI

Reddy DS. Physiological role of adrenal deoxycorticosterone-derived neuroactive steroids in stress-sensitive conditions. Neuroscience (2006) 138:911–20. doi: 10.1016/j.neuroscience.2005.10.016 PubMed DOI

Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev (2011) 32:81–151. doi: 10.1210/er.2010-0013 PubMed DOI PMC

Chapman K, Holmes M, Seckl J. 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev (2013) 93:1139–206. doi: 10.1152/physrev.00020.2012 PubMed DOI PMC

Basu R, Singh RJ, Basu A, Chittilapilly EG, Johnson CM, Toffolo G, et al. . Splanchnic cortisol production occurs in humans: evidence for conversion of cortisone to cortisol via the 11-β hydroxysteroid dehydrogenase (11β-HSD) type 1 pathway. Diabetes (2004) 53:2051–9. doi: 10.2337/diabetes.53.8.2051 PubMed DOI

Basu R, Edgerton DS, Singh RJ, Cherrington A, Rizza RA. Splanchnic cortisol production in dogs occurs primarily in the liver: evidence for substantial hepatic specific 11β hydroxysteroid dehydrogenase type 1 activity. Diabetes (2006) 55:3013–9. doi: 10.2337/db06-0601 PubMed DOI

Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, et al. . The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry (2013) 18:666–73. doi: 10.1038/mp.2012.77 PubMed DOI

Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-N, et al. . Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol (2004) 558:263–75. doi: 10.1113/jphysiol.2004.063388 PubMed DOI PMC

Vagnerová K, Vodička M, Hermanová P, Ergang P, Šrůtková D, Klusoňová P, et al. . Interactions between gut microbiota and acute restraint stress in peripheral structures of the hypothalamic-pituitary-adrenal axis and the intestine of male mice. Front Immunol (2019) 10:2655. doi: 10.3389/fimmu.2019.02655 PubMed DOI PMC

Cussotto S, Sandhu KV, Dinan TG, Cryan JF. The neuroendocrinology of the microbiota-gut-brain axis: A behavioural perspective. Front Neuroendocrinol (2018) 51:80–101. doi: 10.1016/j.yfrne.2018.04.002 PubMed DOI

Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun (2011) 25:397–407. doi: 10.1016/j.bbi.2010.10.023 PubMed DOI PMC

De Palma G, Blennerhassett P, Lu J, Deng Y, Park AJ, Green W, et al. . Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun (2015) 6:7735. doi: 10.1038/ncomms8735 PubMed DOI

Becattini S, Sorbara MT, Kim SG, Littmann EL, Dong Q, Walsh G, et al. . Rapid transcriptional and metabolic adaptation of intestinal microbes to host immune activation. Cell Host Microbe (2021) 29:378–393.e5. doi: 10.1016/j.chom.2021.01.003 PubMed DOI PMC

Morris DJ, Ridlon JM. Glucocorticoids and gut bacteria: “The GALF Hypothesis” in the metagenomic era. Steroids (2017) 125:1–13. doi: 10.1016/j.steroids.2017.06.002 PubMed DOI

Diviccaro S, Caputi V, Cioffi L, Giatti S, Lyte JM, Caruso D, et al. . Exploring the impact of the microbiome on neuroactive steroid levels in germ-free animals. Int J Mol Sci (2021) 22:12551. doi: 10.3390/ijms222212551 PubMed DOI PMC

Nouveau L, Buatois V, Cons L, Chatel L, Pontini G, Pleche N, et al. . Immunological analysis of the murine anti-CD3-induced cytokine release syndrome model and therapeutic efficacy of anti-cytokine antibodies. Eur J Immunol (2021) 51:2074–85. doi: 10.1002/eji.202149181 PubMed DOI PMC

Andreis PG, Neri G, Belloni AS, Mazzocchi G, Kasprzak A, Nussdorfer GG. Interleukin-1 beta enhances corticosterone secretion by acting directly on the rat adrenal gland. Endocrinology (1991) 129:53–7. doi: 10.1210/endo-129-1-53 PubMed DOI

Bethin KE, Vogt SK, Muglia LJ. Interleukin-6 is an essential, corticotropin-releasing hormone-independent stimulator of the adrenal axis during immune system activation. Proc Natl Acad Sci U.S.A. (2000) 97:9317–22. doi: 10.1073/pnas.97.16.9317 PubMed DOI PMC

Noti M, Corazza N, Mueller C, Berger B, Brunner T. TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. J Exp Med (2010) 207:1057–66. doi: 10.1084/jem.20090849 PubMed DOI PMC

Noti M, Corazza N, Tuffin G, Schoonjans K, Brunner T. Lipopolysaccharide induces intestinal glucocorticoid synthesis in a TNFα-dependent manner. FASEB J (2010) 24:1340–6. doi: 10.1096/fj.09-140913 PubMed DOI

Schwarzer M, Hermanová P, Šrůtková D, Golias J, Hudcovic T, Zwicker C, et al. . Germ-free mice exhibit mast cells with impaired functionality and gut homing and do not develop food allergy. Front Immunol (2019) 10:205. doi: 10.3389/fimmu.2019.00205 PubMed DOI PMC

Cima I, Corazza N, Dick B, Fuhrer A, Herren S, Jakob S, et al. . Intestinal epithelial cells synthesize glucocorticoids and regulate T cell activation. J Exp Med (2004) 200:1635–46. doi: 10.1084/jem.20031958 PubMed DOI PMC

Gazárková T, Kočová Vlčková K, Plachká K, Dubecová D, Vagnerová K, Klusoňová P, et al. . Comprehensive targeted profiling of multiple steroid classes in rodent plasma using liquid chromatography-mass spectrometry. Anal Chem (2024). (in preparation).

Mueller M, Cima I, Noti M, Fuhrer A, Jakob S, Dubuquoy L, et al. . The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine. J Exp Med (2006) 203:2057–62. doi: 10.1084/jem.20060357 PubMed DOI PMC

Fries GR, Gassen NC, Rein T. The FKBP51 glucocorticoid receptor co-chaperone: regulation, function, and implications in health and disease. Int J Mol Sci (2017) 18:2614. doi: 10.3390/ijms18122614 PubMed DOI PMC

Ergang P, Vytáčková K, Švec J, Bryndová J, Mikšík I, Pácha J. Upregulation of 11β-hydroxysteroid dehydrogenase 1 in lymphoid organs during inflammation in the rat. J Steroid Biochem Mol Biol (2011) 126:19–25. doi: 10.1016/j.jsbmb.2011.04.002 PubMed DOI

Diviccaro S, Giatti S, Borgo F, Falvo E, Caruso D, Garcia-Segura LM, et al. . Steroidogenic machinery in the adult rat colon. J Steroid Biochem Mol Biol (2020) 203:105732. doi: 10.1016/j.jsbmb.2020.105732 PubMed DOI

Ergang P, Vagnerová K, Hermanová P, Vodička M, Jágr M, Šrůtková D, et al. . The gut microbiota affects corticosterone production in the murine small intestine. Int J Mol Sci (2021) 22:4229. doi: 10.3390/ijms22084229 PubMed DOI PMC

Maldonado-Devincci AM, Beattie MC, Morrow DH, McKinley RE, Cook JB, O’Buckley TK, et al. . Reduction of circulating and selective limbic brain levels of (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) following forced swim stress in C57BL/6J mice. Psychopharmacol (Berl) (2014) 231:3281–92. doi: 10.1007/s00213-014-3552-z PubMed DOI PMC

Park MH, Rehman SU, Kim IS, Choi MS, Yoo HH. Stress-induced changes of neurosteroid profiles in rat brain and plasma under immobilized condition. J Pharm BioMed Anal (2017) 138:92–9. doi: 10.1016/j.jpba.2017.02.007 PubMed DOI

Purdy RH, Morrow AL, Moore PHJ, Paul SM. Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci U.S.A. (1991) 88:4553–7. doi: 10.1073/pnas.88.10.4553 PubMed DOI PMC

Beishuizen A, Thijs LG. Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. J Endotoxin Res (2003) 9:3–24. doi: 10.1179/096805103125001298 PubMed DOI

Billiards SS, Walker DW, Canny BJ, Hirst JJ. Endotoxin increases sleep and brain allopregnanolone concentrations in newborn lambs. Pediatr Res (2002) 52:892–9. doi: 10.1203/00006450-200212000-00014 PubMed DOI

Spiga F, Zhao Z, Lightman SL. Prolonged treatment with the synthetic glucocorticoid methylprednisolone affects adrenal steroidogenic function and response to inflammatory stress in the rat. Brain Behav Immun (2020) 87:703–14. doi: 10.1016/j.bbi.2020.03.001 PubMed DOI PMC

Varga J, Ferenczi S, Kovács KJ, Garafova A, Jezova D, Zelena D. Comparison of stress-induced changes in adults and pups: is aldosterone the main adrenocortical stress hormone during the perinatal period in rats? PloS One (2013) 8:e72313. doi: 10.1371/journal.pone.0072313 PubMed DOI PMC

Pérez JH, Swanson RE, Lau HJ, Cheah J, Bishop VR, Snell KRS, et al. . Tissue-specific expression of 11β-HSD and its effects on plasma corticosterone during the stress response. J Exp Biol (2020) 223:jeb209346. doi: 10.1242/jeb.209346 PubMed DOI

Hales DB, Payne AH. Glucocorticoid-mediated repression of P450scc mRNA and de novo synthesis in cultured Leydig cells. Endocrinology (1989) 124:2099–104. doi: 10.1210/endo-124-5-2099 PubMed DOI

Lin H, Yuan K, Zhou H, Bu T, Su H, Liu S, et al. . Time-course changes of steroidogenic gene expression and steroidogenesis of rat Leydig cells after acute immobilization stress. Int J Mol Sci (2014) 15:21028–44. doi: 10.3390/ijms151121028 PubMed DOI PMC

Abbaszade IG, Clarke TR, Park CH, Payne AH. The mouse 3 beta-hydroxysteroid dehydrogenase multigene family includes two functionally distinct groups of proteins. Mol Endocrinol (1995) 9:1214–22. doi: 10.1210/mend.9.9.7491113 PubMed DOI

Penning TM, Bennett MJ, Smith-Hoog S, Schlegel BP, Jez JM, Lewis M. Structure and function of 3α-hydroxysteroid dehydrogenase. Steroids (1997) 62:101–11. doi: 10.1016/s0039-128x(96)00167-5 PubMed DOI

Bellemare V, Labrie F, Luu-The V. Isolation and characterization of a cDNA encoding mouse 3α-hydroxysteroid dehydrogenase: an androgen-inactivating enzyme selectively expressed in female tissues. J Steroid Biochem Mol Biol (2006) 98:18–24. doi: 10.1016/j.jsbmb.2005.07.004 PubMed DOI

Ishikura S, Usami N, Nakajima S, Kameyama A, Shiraishi H, Carbone V, et al. . Characterization of two isoforms of mouse 3(17)α-hydroxysteroid dehydrogenases of the aldo-keto reductase family. Biol Pharm Bull (2004) 27:1939–45. doi: 10.1248/bpb.27.1939 PubMed DOI

Chetyrkin SV, Belyaeva OV, Gough WH, Kedishvili NY. Characterization of a novel type of human microsomal 3α-hydroxysteroid dehydrogenase: unique tissue distribution and catalytic properties. J Biol Chem (2001) 276:22278–86. doi: 10.1074/jbc.M102076200 PubMed DOI

Torow N, Hornef MW. The neonatal window of opportunity: setting the stage for life-long host-microbial interaction and immune homeostasis. J Immunol (2017) 198:557–63. doi: 10.4049/jimmunol.1601253 PubMed DOI

Patchev VK, Hassan AH, Holsboer DF, Almeida OF. The neurosteroid tetrahydroprogesterone attenuates the endocrine response to stress and exerts glucocorticoid-like effects on vasopressin gene transcription in the rat hypothalamus. Neuropsychopharmacology (1996) 15:533–40. doi: 10.1016/S0893-133X(96)00096-6 PubMed DOI

Boero G, Tyler RE, Todd CA, O’Buckley TK, Balan I, Besheer J, et al. . (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP) regulation of hypothalamic and extrahypothalamic corticotropin releasing factor (CRF): Sexual dimorphism and brain region specificity in Sprague Dawley rats. Neuropharmacology (2021) 186:108463. doi: 10.1016/j.neuropharm.2021.108463 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...