The Gut Microbiota Affects Corticosterone Production in the Murine Small Intestine

. 2021 Apr 19 ; 22 (8) : . [epub] 20210419

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33921780

Grantová podpora
18-02993S, 21-10845S Czech Science Foundation

Glucocorticoids (GCs) are hormones that are released in response to stressors and exhibit many activities, including immunomodulatory and anti-inflammatory activities. They are primarily synthesized in the adrenal gland but are also produced in peripheral tissues via regeneration of adrenal 11-oxo metabolites or by de novo synthesis from cholesterol. The present study investigated the influence of the microbiota on de novo steroidogenesis and regeneration of corticosterone in the intestine of germ-free (GF) and specific pathogen-free mice challenged with a physical stressor (anti-CD3 antibody i.p. injection). In the small intestine, acute immune stress resulted in increased mRNA levels of the proinflammatory cytokines IL1β, IL6 and Tnfα and genes involved in de novo steroidogenesis (Stard3 and Cyp11a1), as well as in regeneration of active GCs from their 11-oxo metabolites (Hsd11b1). GF mice showed a generally reduced transcriptional response to immune stress, which was accompanied by decreased intestinal corticosterone production and reduced expression of the GC-sensitive marker Fkbp5. In contrast, the interaction between stress and the microbiota was not detected at the level of plasma corticosterone or the transcriptional response of adrenal steroidogenic enzymes. The results indicate a differential immune stress-induced intestinal response to proinflammatory stimuli and local corticosterone production driven by the gut microbiota.

Zobrazit více v PubMed

Cryan J.F., O’Riordan K.J., Cowan C.S.M., Sandhu K.V., Bastiaanssen T.F.S., Boehme M., Codagnone M.G., Cussotto S., Fulling C., Golubeva A.V., et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019;99:1877–2013. doi: 10.1152/physrev.00018.2018. PubMed DOI

Giuffrè M., Moretti R., Campisciano G., da Silveira A.B.M., Monda V.M., Comar M., Di Bella S., Antonello R.M., Luzzati R., Crocè L.S. You talking to me? Says the enteric nervous system (ENS) to the microbe. How intestinal microbes interact with the ENS. J. Clin. Med. 2020;9:3705. doi: 10.3390/jcm9113705. PubMed DOI PMC

Sudo N., Chida Y., Aiba Y., Sonoda J., Oyama N., Yu X.N., Kubo C., Koga Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 2004;558:263–275. doi: 10.1113/jphysiol.2004.063388. PubMed DOI PMC

Burokas A., Arboleya S., Moloney R.D., Peterson V.L., Murphy K., Clarke G., Stanton C., Dinan T.G., Cryan J.F. Targeting the microbiota-gut-brain axis: Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol. Psychiatry. 2017;82:472–487. doi: 10.1016/j.biopsych.2016.12.031. PubMed DOI

Ait-Belgnaoui A., Durand H., Cartier C., Chaumaz G., Eutamene H., Ferrier L., Houdeau E., Fioramonti J., Bueno L., Theodorou V. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 2012;37:1885–1895. doi: 10.1016/j.psyneuen.2012.03.024. PubMed DOI

Sapolsky R.M., Romero L.M., Munck A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000;21:55–89. doi: 10.1210/edrv.21.1.0389. PubMed DOI

Cain D.W., Cidlowski J.A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 2017;17:233–247. doi: 10.1038/nri.2017.1. PubMed DOI PMC

Ahmed A., Schmidt C., Brunner T. Extra-adrenal glucocorticoid synthesis in the intestinal mucosa: Between immune homeostasis and immune escape. Front. Immunol. 2019;10:1438. doi: 10.3389/fimmu.2019.01438. PubMed DOI PMC

Slominski A., Zbytek B., Nikolakis G., Manna P.R., Skobowiat C., Zmijewski M., Li W., Janjetovic Z., Postlethwaite A., Zouboulis C.C., et al. Steroidogenesis in the skin: Implications for local immune functions. J. Steroid Biochem. Mol. Biol. 2013;137:107–123. doi: 10.1016/j.jsbmb.2013.02.006. PubMed DOI PMC

Tiganescu A., Walker E.A., Hardy R.S., Mayes A.E., Stewart P.M. Localization, age- and site-dependent expression, and regulation of 11β-hydroxysteroid dehydrogenase type 1 in skin. J. Investig. Dermatol. 2011;131:30–36. doi: 10.1038/jid.2010.257. PubMed DOI

Cima I., Corazza N., Dick B., Fuhrer A., Herren S., Jakob S., Ayuni E., Mueller C., Brunner T. Intestinal epithelial cells synthesize glucocorticoids and regulate T cell activation. J. Exp. Med. 2004;200:1635–1646. doi: 10.1084/jem.20031958. PubMed DOI PMC

Noti M., Corazza N., Mueller C., Berger B., Brunner T. TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. J. Exp. Med. 2010;207:1057–1066. doi: 10.1084/jem.20090849. PubMed DOI PMC

Whorwood C.B., Ricketts M.L., Stewart P.M. Epithelial cell localization of type 2 11β-hydroxysteroid dehydrogenase in rat and human colon. Endocrinology. 1994;135:2533–2541. doi: 10.1210/endo.135.6.7988441. PubMed DOI

Jia Y., Domenico J., Takeda K., Han J., Wang M., Armstrong M., Reisdorph N., O’Connor B.P., Lucas J.J., Gelfand E.W. Steroidogenic enzyme Cyp11a1 regulates Type 2 CD8+ T cell skewing in allergic lung disease. Proc. Natl. Acad. Sci. USA. 2013;110:8152–8157. doi: 10.1073/pnas.1216671110. PubMed DOI PMC

Mahata B., Pramanik J., van der Weyden L., Polanski K., Kar G., Riedel A., Chen X., Fonseca N.A., Kundu K., Campos L.S., et al. Tumors induce de novo steroid biosynthesis in T cells to evade immunity. Nat. Commun. 2020;11:3588. doi: 10.1038/s41467-020-17339-6. PubMed DOI PMC

Zhang T.Y., Ding X., Daynes R.A. The expression of 11β-hydroxysteroid dehydrogenase type I by lymphocytes provides a novel means for intracrine regulation of glucocorticoid activities. J. Immunol. 2005;174:879–889. doi: 10.4049/jimmunol.174.2.879. PubMed DOI

Ergang P., Vytáčková K., Švec J., Bryndová J., Mikšík I., Pácha J. Upregulation of 11β-hydroxysteroid dehydrogenase 1 in lymphoid organs during inflammation in the rat. J. Steroid Biochem. Mol. Biol. 2011;126:19–25. doi: 10.1016/j.jsbmb.2011.04.002. PubMed DOI

Noti M., Corazza N., Tuffin G., Schoonjans K., Brunner T. Lipopolysaccharide induces intestinal glucocorticoid synthesis in a TNF-dependent manner. FASEB J. 2010;24:1340–1346. doi: 10.1096/fj.09-140913. PubMed DOI

Bryndová J., Žbánková S., Kment M., Pácha J. Colitis up-regulates local glucocorticoid activation and down-regulates inactivation in colonic tissue. Scand. J. Gastroenterol. 2004;39:549–553. doi: 10.1080/00365520410004659. PubMed DOI

Huang S.C., Lee C.T., Chung B.C. Tumor necrosis factor suppresses NR5A2 activity and intestinal glucocorticoid synthesis to sustain chronic colitis. Sci. Signal. 2014;7:ra20. doi: 10.1126/scisignal.2004786. PubMed DOI

Ballegeer M., Van Looveren K., Timmermans S., Eggermont M., Vandevyver S., Thery F., Dendoncker K., Souffriau J., Vandewalle J., Van Wyngene L., et al. Glucocorticoid receptor dimers control intestinal STAT1 and TNF-induced inflammation in mice. J. Clin. Investig. 2018;128:3265–3279. doi: 10.1172/JCI96636. PubMed DOI PMC

Huang J., Jia R., Brunner T. Local synthesis of immunosuppressive glucocorticoids in the intestinal epithelium regulates anti-viral immune responses. Cell. Immunol. 2018;334:1–10. doi: 10.1016/j.cellimm.2018.08.009. PubMed DOI

Coutinho A.E., Kipari T.M., Zhang Z., Esteves C.L., Lucas C.D., Gilmour J.S., Webster S.P., Walker B.R., Hughes J., Savill J.S., et al. 11β-Hydroxysteroid dehydrogenase type 1 is expressed in neutrophils and restrains an inflammatory response in male mice. Endocrinology. 2016;157:2928–2936. doi: 10.1210/en.2016-1118. PubMed DOI PMC

Vodička M., Ergang P., Hrnčíř T., Mikulecká A., Kvapilová P., Vagnerová K., Šestáková B., Fajstová A., Hermanová P., Hudcovic T., et al. Microbiota affects the expression of genes involved in HPA axis regulation and local metabolism of glucocorticoids in chronic psychosocial stress. Brain Behav. Immun. 2018;73:615–624. doi: 10.1016/j.bbi.2018.07.007. PubMed DOI

Vagnerová K., Vodička M., Hermanová P., Ergang P., Šrůtková D., Klusoňová P., Balounová K., Hudcovic T., Pácha J. Interactions between gut microbiota and acute restraint stress in peripheral structures of the hypothalamic-pituitary-adrenal axis and the intestine of male mice. Front. Immunol. 2019;10:2655. doi: 10.3389/fimmu.2019.02655. PubMed DOI PMC

Johnson J.S., Opiyo M.N., Thomson M., Gharbi K., Seckl J.R., Heger A., Chapman K.E. 11β-hydroxysteroid dehydrogenase-1 deficiency alters the gut microbiome response to Western diet. J. Endocrinol. 2017;232:273–283. doi: 10.1530/JOE-16-0578. PubMed DOI PMC

Mukherji A., Kobiita A., Ye T., Chambon P. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell. 2013;153:812–827. doi: 10.1016/j.cell.2013.04.020. PubMed DOI

Mueller M., Cima I., Noti M., Fuhrer A., Jakob S., Dubuquoy L., Schoonjans K., Brunner T. The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine. J. Exp. Med. 2006;203:2057–2062. doi: 10.1084/jem.20060357. PubMed DOI PMC

Valle L.D., Couët J., Labrie Y., Simard J., Belvedere P., Simontacchi C., Labrie F., Colombo L. Occurrence of cytochrome P450c17 mRNA and dehydroepiandrosterone biosynthesis in the rat gastrointestinal tract. Mol. Cell. Endocrinol. 1995;111:83–92. doi: 10.1016/0303-7207(95)03553-j. PubMed DOI

Reboldi A., Cyster J.G. Peyer’s patches: Organizing B-cell responses at the intestinal frontier. Immunol. Rev. 2016;271:230–245. doi: 10.1111/imr.12400. PubMed DOI PMC

Igaz P., Tömböl Z., Szabó P.M., Likó I., Rácz K. Steroid biosynthesis inhibitors in the therapy of hypercortisolism: Theory and practice. Curr. Med. Chem. 2008;15:2734–2747. doi: 10.2174/092986708786242921. PubMed DOI

Sampath-Kumar R., Yu M., Khalil M.W., Yang K. Metyrapone is a competitive inhibitor of 11β-hydroxysteroid dehydrogenase type 1 reductase. J. Steroid Biochem. Mol. Biol. 1997;62:195–199. doi: 10.1016/s0960-0760(97)00027-7. PubMed DOI

Marcolongo P., Senesi S., Gava B., Fulceri R., Sorrentino V., Margittai E., Lizák B., Csala M., Bánhegyi G., Benedetti A. Metyrapone prevents cortisone-induced preadipocyte differentiation by depleting luminal NADPH of the endoplasmic reticulum. Biochem. Pharmacol. 2008;76:382–390. doi: 10.1016/j.bcp.2008.05.027. PubMed DOI

Ergang P., Vodička M., Vagnerová K., Moravec M., Kvapilová P., Kment M., Pácha J. Inflammation regulates 11β-hydroxysteroid dehydrogenase type 1 differentially in specific compartments of the gut mucosal immune system. Steroids. 2017;126:66–73. doi: 10.1016/j.steroids.2017.07.007. PubMed DOI

Vermeer H., Hendriks-Stegeman B.I., van der Burg B., van Buul-Offers S.C., Jansen M. Glucocorticoid-induced increase in lymphocytic FKBP51 messenger ribonucleic acid expression: A potential marker for glucocorticoid sensitivity, potency, and bioavailability. J. Clin. Endocrinol. Metab. 2003;88:277–284. doi: 10.1210/jc.2002-020354. PubMed DOI

Miller W.L., Auchus R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 2011;32:81–151. doi: 10.1210/er.2010-0013. PubMed DOI PMC

Clarke G., Grenham S., Scully P., Fitzgerald P., Moloney R.D., Shanahan F., Dinan T.G., Cryan J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry. 2013;18:666–673. doi: 10.1038/mp.2012.77. PubMed DOI

Crumeyrolle-Arias M., Jaglin M., Bruneau A., Vancassel S., Cardona A., Daugé V., Naudon L., Rabot S. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology. 2014;42:207–217. doi: 10.1016/j.psyneuen.2014.01.014. PubMed DOI

Menezes-Garcia Z., Arifa R.D.D.N., Acúrcio L., Brito C.B., Gouvea J.O., Lima R.L., Bastos R.W., Dias A.C.F., Antunes Dourado L.P., Bastos L.F.S., et al. Colonization by Enterobacteriaceae is crucial for acute inflammatory responses in murine small intestine via regulation of corticosterone production. Gut Microbes. 2020;11:1531–1546. doi: 10.1080/19490976.2020.1765946. PubMed DOI PMC

Bouguen G., Langlois A., Djouina M., Branche J., Koriche D., Dewaeles E., Mongy A., Auwerx J., Colombel J.F., Desreumaux P., et al. Intestinal steroidogenesis controls PPARγ expression in the colon and is impaired during ulcerative colitis. Gut. 2015;64:901–910. doi: 10.1136/gutjnl-2014-307618. PubMed DOI

Mueller M., Atanasov A., Cima I., Corazza N., Schoonjans K., Brunner T. Differential regulation of glucocorticoid synthesis in murine intestinal epithelial versus adrenocortical cell lines. Endocrinology. 2007;148:1445–1453. doi: 10.1210/en.2006-0591. PubMed DOI

Vagnerová K., Kverka M., Klusoňová P., Ergang P., Mikšík I., Tlaskalová-Hogenová H., Pácha J. Intestinal inflammation modulates expression of 11β-hydroxysteroid dehydrogenase in murine gut. J. Endocrinol. 2006;191:497–503. doi: 10.1677/joe.1.06732. PubMed DOI

Žbánková S., Bryndová J., Leden P., Kment M., Švec A., Pácha J. 11β-hydroxysteroid dehydrogenase 1 and 2 expression in colon from patients with ulcerative colitis. J. Gastroenterol. Hepatol. 2007;22:1019–1023. doi: 10.1111/j.1440-1746.2006.04529.x. PubMed DOI

Jun Y.J., Park S.J., Kim T.H., Lee S.H., Lee K.J., Hwang S.M., Lee S.H. Expression of 11β-hydroxysteroid dehydrogenase 1 and 2 in patients with chronic rhinosinusitis and their possible contribution to local glucocorticoid activation in sinus mucosa. J. Allergy Clin. Immunol. 2014;134:926–934. doi: 10.1016/j.jaci.2014.03.033. PubMed DOI

Elustondo P., Martin L.A., Karten B. Mitochondrial cholesterol import. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids. 2017;1862:90–101. doi: 10.1016/j.bbalip.2016.08.012. PubMed DOI

Ueno N., Hasebe T., Kaneko A., Yamamoto M., Fujiya M., Kohgo Y., Kono T., Wang C.Z., Yuan C.S., Bissonnette M., et al. TU-100 (Daikenchuto) and ginger ameliorate anti-CD3 antibody induced T cell-mediated murine enteritis: Microbe-independent effects involving Akt and NF-κB suppression. PLoS ONE. 2014;9:e97456. doi: 10.1371/journal.pone.0097456. PubMed DOI PMC

Matysik S., Liebisch G. Quantification of steroid hormones in human serum by liquid chromatography-high resolution tandem mass spectrometry. J. Chromatogr. A. 2017;1526:112–118. doi: 10.1016/j.chroma.2017.10.042. PubMed DOI

Olisov D., Lee K., Jun S.H., Song S.H., Kim J.H., Lee Y.A., Shin C.H., Song J. Measurement of serum steroid profiles by HPLC-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019;1117:1–9. doi: 10.1016/j.jchromb.2019.04.001. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...