• This record comes from PubMed

Profiling of adrenal corticosteroids in blood and local tissues of mice during chronic stress

. 2023 May 04 ; 13 (1) : 7278. [epub] 20230504

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 37142643
PubMed Central PMC10160118
DOI 10.1038/s41598-023-34395-2
PII: 10.1038/s41598-023-34395-2
Knihovny.cz E-resources

Stress increases plasma concentrations of corticosteroids, however, their tissue levels are unclear. Using a repeated social defeat paradigm, we examined the impact of chronic stress on tissue levels of corticosterone (CORT), progesterone (PROG), 11-deoxycorticosterone (11DOC) and 11-dehydrocorticosterone (11DHC) and on gut microbiota, which may reshape the stress response. Male BALB/c mice, liquid chromatography-tandem mass spectrometry and 16S RNA gene sequencing were used to screen steroid levels and fecal microbiome, respectively. Stress induced greater increase of CORT in the brain, liver, and kidney than in the colon and lymphoid organs, whereas 11DHC was the highest in the colon, liver and kidney and much lower in the brain and lymphoid organs. The CORT/11DHC ratio in plasma was similar to the brain but much lower in other organs. Stress also altered tissue levels of PROG and 11DOC and the PROG/11DOC ratio was much higher in lymphoid organs that in plasma and other organs. Stress impacted the β- but not the α-diversity of the gut microbiota and LEfSe analysis revealed several biomarkers associated with stress treatment. Our data indicate that social defeat stress modulates gut microbiota diversity and induces tissue-dependent changes in local levels of corticosteroids, which often do not reflect their systemic levels.

See more in PubMed

McEwen BS. Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiol. Rev. 2007;87:873–904. doi: 10.1152/physrev.00041.2006. PubMed DOI

Herman JP, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr. Physiol. 2016;6:603–621. doi: 10.1002/cphy.c150015. PubMed DOI PMC

Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000;21:55–89. PubMed

Hueston CM, Deak T. On the time course, generality, and regulation of plasma progesterone release in male rats by stress exposure. Endocrinology. 2014;155:3527–3537. doi: 10.1210/en.2014-1060. PubMed DOI

Sze Y, Gill AC, Brunton PJ. Sex-dependent changes in neuroactive steroid concentrations in the rat brain following acute swim stress. J. Neuroendocrinol. 2018;30:e12644. doi: 10.1111/jne.12644. PubMed DOI PMC

Cima I, et al. Intestinal epithelial cells synthesize glucocorticoids and regulate T cell activation. J. Exp. Med. 2004;200:1635–1646. doi: 10.1084/jem.20031958. PubMed DOI PMC

Ergang P, et al. The gut microbiota affects corticosterone production in the murine small intestine. Int. J. Mol. Sci. 2021;22:4229. doi: 10.3390/ijms22084229. PubMed DOI PMC

Ahmed A, et al. Immune escape of colorectal tumours via local LRH-1/Cyp11b1-mediated synthesis of immunosuppressive glucocorticoids. Mol. Oncol. 2023 doi: 10.1002/1878-0261.13414. PubMed DOI PMC

Vacchio MS, Papadopoulos V, Ashwell JD. Steroid production in the thymus: Implications for thymocyte selection. J. Exp. Med. 1994;179:1835–1846. doi: 10.1084/jem.179.6.1835. PubMed DOI PMC

Lechner O, et al. Glucocorticoid production in the murine thymus. Eur. J. Immunol. 2000;30:337–346. doi: 10.1002/1521-4141(200002)30:2<337::AID-IMMU337>3.0.CO;2-L. PubMed DOI

Mittelstadt PR, Taves MD, Ashwell JD. Cutting edge: De novo glucocorticoid synthesis by hThymic epithelial cells regulates antigen-specific thymocyte selection. J. Immunol. 2018;200:1988–1994. doi: 10.4049/jimmunol.1701328. PubMed DOI PMC

Jia Y, et al. Steroidogenic enzyme Cyp11a1 regulates type 2 CD8+ T cell skewing in allergic lung disease. Proc. Natl. Acad. Sci. U. S. A. 2013;110:8152–8157. doi: 10.1073/pnas.1216671110. PubMed DOI PMC

Mahata B, et al. Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell. Rep. 2014;7:1130–1142. doi: 10.1016/j.celrep.2014.04.011. PubMed DOI PMC

Chapman K, Holmes M, Seckl J. 11β-hydroxysteroid dehydrogenases: Intracellular gate-keepers of tissue glucocorticoid action. Physiol. Rev. 2013;93:1139–1206. doi: 10.1152/physrev.00020.2012. PubMed DOI PMC

Ergang P, et al. Upregulation of 11β-hydroxysteroid dehydrogenase 1 in lymphoid organs during inflammation in the rat. J. Steroid Biochem. Mol. Biol. 2011;126:19–25. doi: 10.1016/j.jsbmb.2011.04.002. PubMed DOI

Taves MD, et al. Lymphoid organs of neonatal and adult mice preferentially produce active glucocorticoids from metabolites, not precursors. Brain Behav. Immun. 2016;57:271–281. doi: 10.1016/j.bbi.2016.05.003. PubMed DOI

Zhang TY, Ding X, Daynes RA. The expression of 11β-hydroxysteroid dehydrogenase type I by lymphocytes provides a novel means for intracrine regulation of glucocorticoid activities. J. Immunol. 2005;174:879–889. doi: 10.4049/jimmunol.174.2.879. PubMed DOI

Hamden JE, et al. Steroid profiling of glucocorticoids in microdissected mouse brain across development. Dev. Neurobiol. 2021;81:189–206. doi: 10.1002/dneu.22808. PubMed DOI

Melcangi RC, Garcia-Segura LM, Mensah-Nyagan AG. Neuroactive steroids: state of the art and new perspectives. Cell. Mol. Life Sci. 2008;65:777–797. doi: 10.1007/s00018-007-7403-5. PubMed DOI PMC

Guo X, et al. Effects of refined xiaoyaosan on depressive-like behaviors in rats with chronic unpredictable mild stress through neurosteroids, their synthesis and metabolic enzymes. Molecules. 2017;22:1386. doi: 10.3390/molecules22081386. PubMed DOI PMC

Jamieson PM, Fuchs E, Flugge G, Seckl JR. Attenuation of hippocampal 11β-hydroxysteroid dehydrogenase type 1 by chronic psychosocial stress in the tree shrew. Stress. 1997;2:123–132. doi: 10.3109/10253899709014743. PubMed DOI

Vodička M, et al. Microbiota affects the expression of genes involved in HPA axis regulation and local metabolism of glucocorticoids in chronic psychosocial stress. Brain Behav. Immun. 2018;73:615–624. doi: 10.1016/j.bbi.2018.07.007. PubMed DOI

Scheer S, et al. Early-life antibiotic treatment enhances the pathogenicity of CD4+ T cells during intestinal inflammation. J. Leukoc. Biol. 2017;101:893–900. doi: 10.1189/jlb.3MA0716-334RR. PubMed DOI

Croft AP, et al. Effect of minor laboratory procedures, adrenalectomy, social defeat or acute alcohol on regional brain concentrations of corticosterone. Brain Res. 2008;1238:12–22. doi: 10.1016/j.brainres.2008.08.009. PubMed DOI

Bailey MT, et al. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav. Immun. 2011;25:397–407. doi: 10.1016/j.bbi.2010.10.023. PubMed DOI PMC

de Weerth C. Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neurosci. Biobehav. Rev. 2017;83:458–471. doi: 10.1016/j.neubiorev.2017.09.016. PubMed DOI

Chu L, Huang Y, Xu Y, Wang LK, Lu Q. An LC-APCI+-MS/MS-based method for determining the concentration of neurosteroids in the brain of male mice with different gut microbiota. J. Neurosci. Methods. 2021;360:109268. doi: 10.1016/j.jneumeth.2021.109268. PubMed DOI

Wu XY, et al. Effect of pentobarbital and isoflurane on acute stress response in rat. Physiol. Behav. 2015;145:118–121. doi: 10.1016/j.physbeh.2015.04.003. PubMed DOI

Mekadim C, et al. Dysbiosis of skin microbiome and gut microbiome in melanoma progression. BMC Microbiol. 2022;22:63. doi: 10.1186/s12866-022-02458-5. PubMed DOI PMC

Hamden JE, et al. Isoflurane stress induces glucocorticoid production in mouse lymphoid organs. J. Endocrinol. 2021;221:137–148. doi: 10.1530/JOE-21-0154. PubMed DOI

Hamden JE, et al. Isoflurane stress induces region-specific glucocorticoid levels in neonatal mouse brain. J. Endocrinol. 2022;255:61–74. doi: 10.1530/JOE-22-0049. PubMed DOI

Salehzadeh M, et al. Glucocorticoid production in lymphoid organs: Acute effects of lipopolysaccharide in neonatal and adult mice. Endocrinology. 2022;163:bqab244. doi: 10.1210/endocr/bqab244. PubMed DOI

Ergang P, et al. Social defeat stimulates local glucocorticoid regeneration in lymphoid organs. Endocr. Connect. 2018;7:1389–1396. doi: 10.1530/EC-18-0319. PubMed DOI PMC

Almanzar G, et al. Expression of 11-hydroxysteroid-dehydrogenase type 2 in human thymus. Steroids. 2016;110:35–40. doi: 10.1016/j.steroids.2016.03.019. PubMed DOI

Turner BB. Tissue differences in the up-regulation of glucocorticoid-binding proteins in the rat. Endocrinology. 1986;118:1211–1216. doi: 10.1210/endo-118-3-1211. PubMed DOI

Brinton RE, McEwen BS. Regional distinctions in the regulation of Type I and Type II adrenal steroid receptors in the central nervous system. Neurosci. Res. Commun. 1988;2:37–45.

Higo S, et al. Endogenous synthesis of corticosteroids in the hippocampus. PLoS ONE. 2011;6:e21631. doi: 10.1371/journal.pone.0021631. PubMed DOI PMC

Roland, B. L., Krozowski, Z. S. & Funder, J. W Glucocorticoid receptor, mineralocorticoid receptors, 11β-hydroxysteroid dehydrogenase-1 and -2 expression in rat brain and kidney: In situ studies. Mol. Cell. Endocrinol. 1995;111:R1–7. doi: 10.1016/0303-7207(95)03559-P. PubMed DOI

Rajan V, Edwards CR, Seckl JR. 11-Hydroxysteroid dehydrogenase in cultured hippocampal cells reactivates inert 11β-dehydrocorticosterone, potentiating neurotoxicity. J. Neurosci. 1996;16:65–70. doi: 10.1523/JNEUROSCI.16-01-00065.1996. PubMed DOI PMC

Vodička M, et al. Regulation of 11β-hydroxysteroid dehydrogenase type 1 and 7α-hydroxylase CYP7B1 during social stress. PLoS ONE. 2014;9:e89421. doi: 10.1371/journal.pone.0089421. PubMed DOI PMC

Schliamser SE, Karlsson K, Larsson JE, Marklund S, Wahlström G. Interaction between benzylpenicillin and thiopental in the central nervous system of the male rat. Pharmacol. Toxicol. 1989;64:222–227. doi: 10.1111/j.1600-0773.1989.tb00634.x. PubMed DOI

Little HJ, et al. Selective increases in regional brain glucocorticoid: A novel effect of chronic alcohol. Neuroscience. 2008;156:1017–1027. doi: 10.1016/j.neuroscience.2008.08.029. PubMed DOI

Kalil B, Leite CM, Carvalho-Lima M, Anselmo-Franci JA. Role of sex steroids in progesterone and corticosterone response to acute restraint stress in rats: Sex differences. Stress. 2013;16:452–460. doi: 10.3109/10253890.2013.777832. PubMed DOI

Reddy DS. Physiological role of adrenal deoxycorticosterone-derived neuroactive steroids in stress-sensitive conditions. Neuroscience. 2006;138:911–920. doi: 10.1016/j.neuroscience.2005.10.016. PubMed DOI

Purdy RH, Morrow AL, Moore PH, Jr, Paul SM. Stress-induced elevations of γ-aminobutyric acid type A receptor-active steroids in the rat brain. Proc. Natl. Acad. Sci. U. S. A. 1991;88:4553–4557. doi: 10.1073/pnas.88.10.4553. PubMed DOI PMC

Corpéchot C, et al. Neurosteroids: 3α-hydroxy-5α-pregnan-20-one and its precursors in the brain, plasma, and steroidogenic glands of male and female rats. Endocrinology. 1993;133:1003–1009. doi: 10.1210/endo.133.3.8365352. PubMed DOI

Rocamora-Reverte L, Reichardt HM, Villunger A, Wiegers G. T-cell autonomous death induced by regeneration of inert glucocorticoid metabolites. Cell Death Dis. 2017;8:e2948. doi: 10.1038/cddis.2017.344. PubMed DOI PMC

Mukhopadhyay R, Mishra MK, Basu A, Bishayi B. Effect of particulate antigenic stimulation or in vivo administration of interleukin-6 on the level of steroidogenic enzymes in adrenal glands and lymphoid tissues of mice with parallel alteration in endogenous inflammatory cytokine level. Cell. Immunol. 2010;261:23–28. doi: 10.1016/j.cellimm.2009.10.005. PubMed DOI

Galley JD, et al. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol. 2014;14:189. doi: 10.1186/1471-2180-14-189. PubMed DOI PMC

Maltz RM, et al. Social stress affects colonic inflammation, the gut microbiome, and short-chain fatty acid levels and receptors. J. Pediatr. Gastroenterol. Nutr. 2019;68:533–540. doi: 10.1097/MPG.0000000000002226. PubMed DOI PMC

Keskitalo A, et al. Gut microbiota diversity but not composition is related to saliva cortisol stress response at the age of 2.5 months. Stress. 2021;24:551–560. doi: 10.1080/10253890.2021.1895110. PubMed DOI

Bharwani A, et al. Structural & functional consequences of chronic psychosocial stress on the microbiome & host. Psychoneuroendocrinology. 2016;63:217–227. doi: 10.1016/j.psyneuen.2015.10.001. PubMed DOI

Guo G, et al. Psychological stress enhances the colonization of the stomach by Helicobacter pylori in the BALB/c mouse. Stress. 2009;12:478–485. doi: 10.3109/10253890802642188. PubMed DOI

Bai X, et al. Heat stress affects faecal microbial and metabolic alterations of rabbits. Front. Microbiol. 2022;12:817615. doi: 10.3389/fmicb.2021.817615. PubMed DOI PMC

Bangsgaard Bendtsen KM, et al. Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse. PLoS ONE. 2012;7:e46231. doi: 10.1371/journal.pone.0046231. PubMed DOI PMC

Li S, et al. Lachnospiraceae shift in the microbial community of mice faecal sample effects on water immersion restraint stress. AMB Express. 2017;7:82. doi: 10.1186/s13568-017-0383-4. PubMed DOI PMC

Liu G, et al. Effect of chronic cyclic heat stress on the intestinal morphology, oxidative status and cecal bacterial communities in broilers. J. Therm. Biol. 2020;91:102619. doi: 10.1016/j.jtherbio.2020.102619. PubMed DOI

Wang Q, et al. Supplementation of sesamin alleviates stress-induced behavioral and psychological disorders via reshaping the gut microbiota structure. J. Agric. Food Chem. 2019;67:12441–12451. doi: 10.1021/acs.jafc.9b03652. PubMed DOI

Pusceddu MM, et al. N-3 Polyunsaturated fatty acids (PUFAs) reverse the impact of early-life stress on the gut microbiota. PLoS ONE. 2015;10:e0139721. doi: 10.1371/journal.pone.0139721. PubMed DOI PMC

Gao X, et al. Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proc. Natl. Acad. Sci. U. S. A. 2018;115:E2960–E2969. doi: 10.1073/pnas.1720696115. PubMed DOI PMC

Xu M, Wang C, Krolick KN, Shi H, Zhu J. Difference in post-stress recovery of the gut microbiome and its altered metabolism after chronic adolescent stress in rats. Sci. Rep. 2020;10:3950. doi: 10.1038/s41598-020-60862-1. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...