Juvenile hormone resistance gene Methoprene-tolerant controls entry into metamorphosis in the beetle Tribolium castaneum
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
17537916
PubMed Central
PMC1965540
DOI
10.1073/pnas.0703719104
PII: 0703719104
Knihovny.cz E-zdroje
- MeSH
- biologická proměna genetika MeSH
- hmyzí geny * MeSH
- kukla účinky léků růst a vývoj ultrastruktura MeSH
- larva účinky léků růst a vývoj ultrastruktura MeSH
- messenger RNA analýza MeSH
- methopren farmakologie MeSH
- molekulární sekvence - údaje MeSH
- rezistence k insekticidům genetika MeSH
- RNA interference MeSH
- Tribolium genetika růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- methopren MeSH
Besides being a spectacular developmental process, metamorphosis is key to insect success. Entry into metamorphosis is controlled by juvenile hormone (JH). In larvae, JH prevents pupal and adult morphogenesis, thus keeping the insect in its immature state. How JH signals to preclude metamorphosis is poorly understood, and a JH receptor remains unknown. One candidate for the JH receptor role is the Methoprene-tolerant (Met) Per-Arnt-Sim (PAS) domain protein [also called Resistance to JH, Rst (1)JH], whose loss confers tolerance to JH and its mimic methoprene in the fruit fly Drosophila melanogaster. However, Met deficiency does not affect the larval-pupal transition, possibly because this process does not require JH absence in Drosophila. By contrast, the red flour beetle Tribolium castaneum is sensitive to developmental regulation by JH, thus making an ideal system to examine the role of Met in the antimetamorphic JH action. Here we show that impaired function of the Met ortholog TcMet renders Tribolium resistant to the effects of ectopic JH and, in a striking contrast to Drosophila, causes early-stage beetle larvae to undergo precocious metamorphosis. This is evident as TcMet-deficient larvae pupate prematurely or develop specific heterochronic phenotypes such as pupal-like cuticular structures, appendages, and compound eyes. Our results demonstrate that TcMet functions in JH response and provide the critical evidence that the putative JH receptor Met mediates the antimetamorphic effect of JH.
Zobrazit více v PubMed
Kukalova-Peck J. The Insects of Australia. Vol 1. Carlton, Australia: Melbourne Univ Press; 1991. pp. 141–179.
Sehnal F, Svacha P, Zrzavy J. In: Metamorphosis. Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells. Gilbert LI, Tata JR, Atkinson BG, editors. San Diego: Academic; 1996. pp. 3–58.
Wigglesworth VB. Q J Microsc Sci. 1934;77:191–222.
Wigglesworth VB. Q J Microsc Sci. 1936;79:91–121.
Riddiford LM. Adv Insect Physiol. 1994;24:213–274.
Dubrovsky EB. Trends Endocrinol Metabol. 2005;16:6–11. PubMed
Fukuda S. J Fac Sci Tokyo Univ Sec IV. 1944;6:477–532.
Williams CM. Biol Bull. 1961;121:572–585.
Connat JL, Delbecque JP, Delachambre J. J Insect Physiol. 1984;30:413–419.
Kikukawa S, Tobe SS. J Insect Physiol. 1986;32:1035–1042.
Quennedey A, Quennedey B. Cell Tissue Res. 1999;296:619–634. PubMed
Tan A, Tanaka H, Tamura T, Shiotsuki T. Proc Natl Acad Sci USA. 2005;102:11751–11756. PubMed PMC
Sehnal F, Zdarek J. J Insect Physiol. 1976;22:673–682.
Ashburner M. Nature. 1970;227:187–189. PubMed
Postlethwait JH. Biol Bull. 1974;147:119–135. PubMed
Riddiford LM, Ashburner M. Gen Comp Endocrinol. 1991;82:172–183. PubMed
Zhou X, Riddiford LM. Development (Cambridge, UK) 2002;129:2259–2269. PubMed
Gilbert LI, Granger NA, Roe RM. Insect Biochem Mol Biol. 2000;30:617–644. PubMed
Wheeler DE, Nijhout HF. BioEssays. 2003;25:994–1001. PubMed
Goodman WG, Granger NA. In: Comprehensive Molecular Insect Science. Gilbert LI, Iatrou K, Gill SS, editors. Vol 3. Oxford: Elsevier; 2005. pp. 319–408.
Wilson T, Fabian J. Dev Biol. 1986;118:190–201. PubMed
Ashok M, Turner C, Wilson TG. Proc Natl Acad Sci USA. 1998;95:2761–2766. PubMed PMC
Shemshedini L, Wilson TG. Proc Natl Acad Sci USA. 1990;87:2072–2076. PubMed PMC
Miura K, Oda M, Makita S, Chinzei Y. FEBS J. 2005;272:1169–1178. PubMed
Flatt T, Tu M-P, Tatar M. BioEssays. 2005;27:999–1010. PubMed
Godlewski J, Wang S, Wilson TG. Biochem Biophys Res Commun. 2006;342:1305–1311. PubMed
Wilson TG, Yerushalmi Y, Donnell DM, Restifo LL. Genetics. 2006;172:253–264. PubMed PMC
Wilson TG, Ashok M. Proc Natl Acad Sci USA. 1998;95:14040–14044. PubMed PMC
Wilson TG, Wang S, Beno M, Farkas R. Mol Gen Genom. 2006;276:294–303. PubMed
Moore AW, Barbel S, Jan LY, Jan YN. Proc Natl Acad Sci USA. 2000;97:10436–10441. PubMed PMC
Wang S, Baumann A, Wilson TG. J Insect Physiol. 2007;53:246–253. PubMed PMC
Kostyukovsky M, Chen B, Atsmi S, Shaaya E. Insect Biochem Mol Biol. 2000;30:891–897. PubMed
Socha R, Sehnal F. J Insect Physiol. 1972;18:317–337.
Roberts PE, Willis JH. J Embryol Exp Morphol. 1980;56:107–123. PubMed
Bouhin H, Charles JP, Quennedey B, Delachambre J. Dev Biol. 1992;149:112–122. PubMed
Slama K. Coll Int CNRS. 1976;251:499–506.
Connat JL, Delbecque JP, Glitho I, Delachambre J. J Insect Physiol. 1991;37:653–622.
Zhou B, Riddiford LM. Dev Biol. 2001;231:125–137. PubMed
MacWhinnie SGB, Allee JP, Nelson CA, Riddiford LM, Truman JW, Champlin DT. Dev Biol. 2005;285:285–297. PubMed
Crews ST, Fan CM. Curr Opin Genet Dev. 1999;9:580–587. PubMed
Bucher G, Klingler M. Development (Cambridge, UK) 2004;131:1729–1740. PubMed
Tomoyasu Y, Denell RE. Dev Genes Evol. 2004;214:575–578. PubMed
Steroid receptor coactivator TAIMAN is a new modulator of insect circadian clock
Evolution of proteins involved in the final steps of juvenile hormone synthesis
Approaches and Tools to Study the Roles of Juvenile Hormones in Controlling Insect Biology
Genetic Evidence for Function of the bHLH-PAS Protein Gce/Met As a Juvenile Hormone Receptor
GENBANK
EF468474