Purification of an insect juvenile hormone receptor complex enables insights into its post-translational phosphorylation

. 2021 Dec ; 297 (6) : 101387. [epub] 20211107

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34758356
Odkazy

PubMed 34758356
PubMed Central PMC8683598
DOI 10.1016/j.jbc.2021.101387
PII: S0021-9258(21)01193-5
Knihovny.cz E-zdroje

Juvenile hormone (JH) plays vital roles in insect reproduction, development, and in many aspects of physiology. JH primarily acts at the gene-regulatory level through interaction with an intracellular receptor (JH receptor [JHR]), a ligand-activated complex of transcription factors consisting of the JH-binding protein methoprene-tolerant (MET) and its partner taiman (TAI). Initial studies indicated significance of post-transcriptional phosphorylation, subunit assembly, and nucleocytoplasmic transport of JHR in JH signaling. However, our knowledge of JHR regulation at the protein level remains rudimentary, partly because of the difficulty of obtaining purified and functional JHR proteins. Here, we present a method for high-yield expression and purification of JHR complexes from two insect species, the beetle T. castaneum and the mosquito Aedes aegypti. Recombinant JHR subunits from each species were coexpressed in an insect cell line using a baculovirus system. MET-TAI complexes were purified through affinity chromatography and anion exchange columns to yield proteins capable of binding both the hormonal ligand (JH III) and DNA bearing cognate JH-response elements. We further examined the beetle JHR complex in greater detail. Biochemical analyses and MS confirmed that T. castaneum JHR was a 1:1 heterodimer consisting of MET and Taiman proteins, stabilized by the JHR agonist ligand methoprene. Phosphoproteomics uncovered multiple phosphorylation sites in the MET protein, some of which were induced by methoprene treatment. Finally, we report a functional bipartite nuclear localization signal, straddled by phosphorylated residues, within the disordered C-terminal region of MET. Our present characterization of the recombinant JHR is an initial step toward understanding JHR structure and function.

Zobrazit více v PubMed

Jindra M., Palli S.R., Riddiford L.M. The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 2013;58:181–204. PubMed

Yamanaka N., Rewitz K.F., O'Connor M.B. Ecdysone control of developmental transitions: Lessons from Drosophila research. Annu. Rev. Entomol. 2013;58:497–516. PubMed PMC

Nijhout H. Princeton University Press; Princeton, NJ: 1994. Insect Hormones.

Flatt T., Tu M.-P., Tatar M. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays. 2005;27:999–1010. PubMed

Roy S., Saha T.T., Zou Z., Raikhel A.S. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 2018;63:489–511. PubMed

Santos C.G., Humann F.C., Hartfelder K. Juvenile hormone signaling in insect oogenesis. Curr. Opin. Insect Sci. 2019;31:43–48. PubMed

Bellés X. Elsevier Inc; London: 2020. Insect Metamorphosis: From Natural History to Regulation of Development and Evolution.

Koelle M.R., Talbot W.S., Segraves W.A., Bender M.T., Cherbas P., Hogness D.S. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell. 1991;67:59–77. PubMed

Thomas H.E., Stunnenberg H.G., Stewart A.F. Heterodimerization of the Drosophila ecdysone receptor with retinoid X receptor and ultraspiracle. Nature. 1993;362:471–475. PubMed

Yao T.P., Forman B.M., Jiang Z., Cherbas L., Chen J.D., McKeown M., Cherbas P., Evans R.M. Functional ecdysone receptor is the product of EcR and ultraspiracle genes. Nature. 1993;366:476–479. PubMed

Hill R.J., Billas I.M.L., Bonneton F., Graham L.D., Lawrence M.C. Ecdysone receptors: From the Ashburner model to structural biology. Annu. Rev. Entomol. 2013;58:251–271. PubMed

Hill R.J., Graham L.D., Turner K.A., Howell L., Tohidi-Esfahani D., Fernley R., Grusovin J., Ren B., Pilling P., Lu L., Phan T., Pollard G.O.L., Pawlak-Skrzecz A., Streltsov V.A., Peat T.S., et al. Structure and function of ecdysone receptors-interactions with ecdysteroids and synthetic agonists. Adv. Insect Physiol. 2012;43:299–351.

Riddiford L.M. Rhodnius, golden oil, and Met: A history of juvenile hormone research. Front. Cell Dev. Biol. 2020;8:679. PubMed PMC

Jones G., Jones D., Li X., Tang L., Ye L., Teal P., Riddiford L., Sandifer C., Borovsky D., Martin J.-R. Activities of natural methyl farnesoids on pupariation and metamorphosis of Drosophila melanogaster. J. Insect Physiol. 2010;56:1456–1464. PubMed

Billas I.M.L., Iwema T., Garnier J.-M., Mitschler A., Rochel N., Moras D. Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor. Nature. 2003;426:91–96. PubMed

Carmichael J.A. The X-ray structure of a hemipteran ecdysone receptor ligand-binding domain: Comparison with a lepidopteran ecdysone receptor ligand-binding domain and implications for insecticide design. J. Biol. Chem. 2005;280:22258–22269. PubMed

Ren B., Peat T.S., Streltsov V.A., Pollard M., Fernley R., Grusovin J., Seabrook S., Pilling P., Phan T., Lu L., Lovrecz G.O., Graham L.D., Hill R.J. Unprecedented conformational flexibility revealed in the ligand-binding domains of the Bovicola ovis ecdysone receptor (EcR) and ultraspiracle (USP) subunits. Acta Crystallogr. D Biol. Crystallogr. 2014;70:1954–1964. PubMed

Wilson T.G., Fabian J. A Drosophila melanogaster mutant resistant to a chemical analog of juvenile hormone. Dev. Biol. 1986;118:190–201. PubMed

Wilson T.G., Ashok M. Insecticide resistance resulting from an absence of target-site gene product. Proc. Natl. Acad. Sci. U. S. A. 1998;95:14040–14044. PubMed PMC

Moore A.W., Barbel S., Jan L.Y., Jan Y.N. A genomewide survey of basic helix-loop-helix factors in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 2000;97:10436–10441. PubMed PMC

Jindra M., Tumova S., Milacek M., Bittova L. A decade with the juvenile hormone receptor. Adv. Insect Physiol. 2021;60:37–85.

Miura K., Oda M., Makita S., Chinzei Y. Characterization of the Drosophila methoprene-tolerantgene product. FEBS J. 2005;272:1169–1178. PubMed

Charles J.-P., Iwema T., Epa V.C., Takaki K., Rynes J., Jindra M. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc. Natl. Acad. Sci. U. S. A. 2011;108:21128–21133. PubMed PMC

Li M., Liu P., Wiley J.D., Ojani R., Bevan D.R., Li J., Zhu J. A steroid receptor coactivator acts as the DNA-binding partner of the methoprene-tolerant protein in regulating juvenile hormone response genes. Mol. Cell. Endocrinol. 2014;394:47–58. PubMed PMC

Jindra M., Uhlirova M., Charles J.-P., Smykal V., Hill R.J. Genetic evidence for function of the bHLH-PAS protein Gce/Met as a juvenile hormone receptor. PLoS Genet. 2015;11 PubMed PMC

Bittova L., Jedlička P., Dracinsky M., Kirubakaran P., Vondrasek J., Hanus R., Jindra M. Exquisite ligand stereoselectivity of a Drosophila juvenile hormone receptor contrasts with its broad agonist repertoire. J. Biol. Chem. 2019;294:410–423. PubMed PMC

Abdou M.A., He Q., Wen D., Zyaan O., Wang J., Xu J., Baumann A.A., Joseph J., Wilson T.G., Li S., Wang J. Drosophila Met and Gce are partially redundant in transducing juvenile hormone action. Insect Biochem. Mol. Biol. 2011;41:938–945. PubMed

Konopova B., Jindra M. Juvenile hormone resistance gene Methoprene-tolerant controls entry into metamorphosis in the beetle Tribolium castaneum. Proc. Natl. Acad. Sci. U. S. A. 2007;104:10488–10493. PubMed PMC

Konopova B., Smykal V., Jindra M. Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PLoS One. 2011;6 PubMed PMC

Lozano J., Bellés X. Role of Methoprene-tolerant (Met) in adult morphogenesis and in adult ecdysis of Blattella germanica. PLoS One. 2014;9 PubMed PMC

Daimon T., Uchibori M., Nakao H., Sezutsu H., Shinoda T. Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle. Proc. Natl. Acad. Sci. U. S. A. 2015;112:E4226–E4235. PubMed PMC

Minakuchi C., Namiki T., Shinoda T. Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Dev. Biol. 2009;325:341–350. PubMed

Kayukawa T., Minakuchi C., Namiki T., Togawa T., Yoshiyama M., Kamimura M., Mita K., Imanishi S., Kiuchi M., Ishikawa Y., Shinoda T. Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proc. Natl. Acad. Sci. U. S. A. 2012;109:11729–11734. PubMed PMC

Kayukawa T., Jouraku A., Ito Y., Shinoda T. Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval-adult metamorphosis. Proc. Natl. Acad. Sci. U. S. A. 2017;114:1057–1062. PubMed PMC

Lozano J., Bellés X. Conserved repressive function of Krüppel homolog 1 on insect metamorphosis in hemimetabolous and holometabolous species. Sci. Rep. 2011;1:163. PubMed PMC

Jindra M. Where did the pupa come from? The timing of juvenile hormone signalling supports homology between stages of hemimetabolous and holometabolous insects. Phil. Trans. R. Soc. Lond. B Biol. Sci. 2019;374:20190064. PubMed PMC

Truman J.W. The evolution of insect metamorphosis. Curr. Biol. 2019;29:R1252–R1268. PubMed

Kewley R.J., Whitelaw M.L., Chapman-Smith A. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int. J. Biochem. Cell Biol. 2004;36:189–204. PubMed

Li M., Mead E.A., Zhu J. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc. Natl. Acad. Sci. U. S. A. 2011;108:638–643. PubMed PMC

Zhang Z., Xu J., Sheng Z., Sui Y., Palli S.R. Steroid receptor co-activator is required for juvenile hormone signal transduction through a bHLH-PAS transcription factor, methoprene tolerant. J. Biol. Chem. 2011;286:8437–8447. PubMed PMC

Bai J., Uehara Y., Montell D.J. Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell. 2000;103:1047–1058. PubMed

Zou Z., Saha T.T., Roy S., Shin S.W., Backman T.W.H., Girke T., White K.P., Raikhel A.S. Juvenile hormone and its receptor, methoprene-tolerant, control the dynamics of mosquito gene expression. Proc. Natl. Acad. Sci. U. S. A. 2013;110:E2173–E2181. PubMed PMC

Cui Y., Sui Y., Xu J., Zhu F., Palli S.R. Juvenile hormone regulates Aedes aegypti Krüppel homolog 1 through a conserved E box motif. Insect Biochem. Mol. Biol. 2014;52:23–32. PubMed PMC

Lozano J., Kayukawa T., Shinoda T., Bellés X. A role for taiman in insect metamorphosis. PLoS Genet. 2014;10 PubMed PMC

Yokoi T., Nabe T., Ishizuka C., Hayashi K., Ito-Harashima S., Yagi T., Nakagawa Y., Miyagawa H. Transcription-inducing activity of natural and synthetic juvenile hormone agonists through the Drosophila Methoprene-tolerant protein. Pest Manag. Sci. 2020;76:2316–2323. PubMed

Yamamoto K., Chadarevian A., Pellegrini M. Juvenile hormone action mediated in male accessory glands of Drosophila by calcium and kinase C. Science. 1988;239:916–919. PubMed

Wilson T.G., DeMoor S., Lei J. Juvenile hormone involvement in Drosophila melanogaster male reproduction as suggested by the Methoprene-tolerant27 mutant phenotype. Insect Biochem. Mol. Biol. 2003;33:1167–1175. PubMed

Liu P., Peng H.-J., Zhu J. Juvenile hormone-activated phospholipase C pathway enhances transcriptional activation by the methoprene-tolerant protein. Proc. Natl. Acad. Sci. U. S. A. 2015;112:E1871–E1879. PubMed PMC

Kim K., Albishi N.M., Palli S.R. Identification of juvenile hormone-induced posttranslational modifications of methoprene tolerant and Krüppel homolog 1 in the yellow fever mosquito, Aedes aegypti. J. Proteomics. 2021;242:104257. PubMed PMC

Kayukawa T., Tateishi K., Shinoda T. Establishment of a versatile cell line for juvenile hormone signaling analysis in Tribolium castaneum. Sci. Rep. 2013;3:1570. PubMed PMC

Graham L.D., Johnson W.M., Pawlak-Skrzecz A., Eaton R.E., Bliese M., Howell L., Hannan G.N., Hill R.J. Ligand binding by recombinant domains from insect ecdysone receptors. Insect Biochem. Mol. Biol. 2007;37:611–626. PubMed

Touhara K., Lerro K.A., Bonning B.C., Hammock B.D., Prestwich G.D. Ligand binding by a recombinant insect juvenile hormone binding protein. Biochemistry. 1993;32:2068–2075. PubMed

Kosugi S., Hasebe M., Tomita M., Yanagawa H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl. Acad. Sci. U. S. A. 2009;106:10171–10176. PubMed PMC

Shin S.W., Zou Z., Saha T.T., Raikhel A.S. bHLH-PAS heterodimer of methoprene-tolerant and cycle mediates circadian expression of juvenile hormone-induced mosquito genes. Proc. Natl. Acad. Sci. U. S. A. 2012;109:16576–16581. PubMed PMC

Miyakawa H., Iguchi T. Comparative luciferase assay for establishing reliable in vitro screening system of juvenile hormone agonists. J. Appl. Toxicol. 2017;37:1082–1090. PubMed

Picard D. Chaperoning steroid hormone action. Trends Endocrinol. Metab. 2006;17:229–235. PubMed

Arbeitman M.N., Hogness D.S. Molecular chaperones activate the Drosophila ecdysone receptor, an RXR heterodimer. Cell. 2000;101:67–77. PubMed

Pongratz I., Mason G.G., Poellinger L. Dual roles of the 90-kDa heat shock protein hsp90 in modulating functional activities of the dioxin receptor. J. Biol. Chem. 1992;267:13728–13734. PubMed

Whitelaw M.L., McGuire J., Picard D., Gustafsson J.A., Poellinger L. Heat shock protein hsp90 regulates dioxin receptor function in vivo. Proc. Natl. Acad. Sci. U. S. A. 1995;92:4437–4441. PubMed PMC

Soshilov A., Denison M.S. Ligand displaces heat shock protein 90 from overlapping binding sites within the aryl hydrocarbon receptor ligand-binding domain. J. Biol. Chem. 2011;286:35275–35282. PubMed PMC

Kazlauskas A., Sundström S., Poellinger L., Pongratz I. The hsp90 chaperone complex regulates intracellular localization of the dioxin receptor. Mol. Cell. Biol. 2001;21:2594–2607. PubMed PMC

Beischlag T.V., Morales J.L., Hollingshead B.D., Perdew G.H. The aryl hydrocarbon receptor complex and the control of gene expression. Crit. Rev. Eukaryot. Gene Expr. 2008;18:207–250. PubMed PMC

Denison M.S., Soshilov A.A., He G., DeGroot D.E., Zhao B. Exactly the same but different: Promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol. Sci. 2011;124:1–22. PubMed PMC

Soshilov A.A., Motta S., Bonati L., Denison M.S. Transitional states in ligand-dependent transformation of the aryl hydrocarbon receptor into its DNA-binding form. Int. J. Mol. Sci. 2020;21:2474. PubMed PMC

He Q., Wen D., Jia Q., Cui C., Wang J., Palli S.R., Li S. Heat shock protein 83 (Hsp83) facilitates Methoprene-tolerant (Met) nuclear import to modulate juvenile hormone signaling. J. Biol. Chem. 2014;289:27874–27885. PubMed PMC

Pursley S., Ashok M., Wilson T.G. Intracellular localization and tissue specificity of the Methoprene-tolerant (Met) gene product in Drosophila melanogaster. Insect Biochem. Mol. Biol. 2000;30:839–845. PubMed

He Q., Zhang Y., Zhang X., Xu D., Dong W., Li S., Wu R. Nucleoporin Nup358 facilitates nuclear import of Methoprene-tolerant (Met) in an importin β- and Hsp83-dependent manner. Insect Biochem. Mol. Biol. 2017;81:10–18. PubMed

Greb-Markiewicz B., Orłowski M., Dobrucki J., Ożyhar A. Sequences that direct subcellular traffic of the Drosophila Methoprene-tolerant protein (MET) are located predominantly in the PAS domains. Mol. Cell. Endocrinol. 2011;345:16–26. PubMed

Greb-Markiewicz B., Sadowska D., Surgut N., Godlewski J., Zarębski M., Ożyhar A. Mapping of the sequences directing localization of the Drosophila germ cell-expressed protein (GCE) PLoS One. 2015;10 PubMed PMC

Greb-Markiewicz B., Kolonko M. Subcellular localization signals of bHLH-PAS proteins: Their significance, current state of knowledge and future perspectives. Int. J. Mol. Sci. 2019;20:4746. PubMed PMC

Lange A., Mills R.E., Lange C.J., Stewart M., Devine S.E., Corbett A.H. Classical nuclear localization signals: Definition, function, and interaction with importin α. J. Biol. Chem. 2007;282:5101–5105. PubMed PMC

Kolonko M., Bystranowska D., Taube M., Kozak M., Bostock M., Popowicz G., Ożyhar A., Greb-Markiewicz B. The intrinsically disordered region of GCE protein adopts a more fixed structure by interacting with the LBD of the nuclear receptor FTZ-F1. Cell Commun. Signal. 2020;18:180. PubMed PMC

Ikuta T., Kobayashi Y., Kawajiri K. Phosphorylation of nuclear localization signal inhibits the ligand-dependent nuclear import of aryl hydrocarbon receptor. Biochem. Biophys. Res. Commun. 2004;317:545–550. PubMed

Davey K. Hormonal control of the follicular epithelium during vitellogenin uptake. Invertebr. Reprod. Dev. 1996;30:249–254.

Jing Y.-P., An H., Zhang S., Wang N., Zhou S. Protein kinase C mediates juvenile hormone-dependent phosphorylation of Na+/K+-ATPase to induce ovarian follicular patency for yolk protein uptake. J. Biol. Chem. 2018;293:20112–20122. PubMed PMC

Ojani R., Liu P., Fu X., Zhu J. Protein kinase C modulates transcriptional activation by the juvenile hormone receptor methoprene-tolerant. Insect Biochem. Mol. Biol. 2016;70:44–52. PubMed PMC

Li Y.-X., Wang D., Zhao W.-L., Zhang J.-Y., Kang X.-L., Li Y.-L., Zhao X.-F. Juvenile hormone induces methoprene-tolerant 1 phosphorylation to increase interaction with Taiman in Helicoverpa armigera. Insect Biochem. Mol. Biol. 2021;130:103519. PubMed

Bern M., Caval T., Kil Y.J., Tang W., Becker C., Carlson E., Kletter D., Sen K.I., Galy N., Hagemas D., Franc V., Heck A.J.R. Parsimonious charge deconvolution for native mass spectrometry. J. Proteome Res. 2018;17:1216–1226. PubMed PMC

Hughes C.S., Foehr S., Garfield D.A., Furlong E.E., Steinmetz L.M., Krijgsveld J. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 2014;10:757. PubMed PMC

Boersema P.J., Raijmakers R., Lemeer S., Mohammed S., Heck A.J.R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 2009;4:484–494. PubMed

Keller A., Nesvizhskii A.I., Kolker E., Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 2002;74:5383–5392. PubMed

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., Pérez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yilmaz S., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. PubMed PMC

Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. PubMed

Chen D., Shah A., Nguyen H., Loo D., Inder K.L., Hill M.M. Online quantitative proteomics p-value calculator for permutation-based statistical testing of peptide ratios. J. Proteome Res. 2014;13:4184–4191. PubMed

Folta-Stogniew E. In: Nedelkov D., Nelson R.W., editors. Vol 328. Humana Press Inc; Totowa, NJ: 2006. Oligomeric states of proteins determined by size-exclusion chromatography coupled with light scattering, absorbance, and refractive index detectors; pp. 97–112. (New and Emerging Proteomic Techniques). Methods Mol. Biol. PubMed

Ho S.N., Hunt H.D., Horton R.M., Pullen J.K., Pease L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989;77:51–59. PubMed

Silver K., Jiang H., Fu J., Phillips T.W., Beeman R.W., Park Y. The Tribolium castaneum cell line TcA: A new tool kit for cell biology. Sci. Rep. 2014;4:6840. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...