Purification of an insect juvenile hormone receptor complex enables insights into its post-translational phosphorylation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34758356
PubMed Central
PMC8683598
DOI
10.1016/j.jbc.2021.101387
PII: S0021-9258(21)01193-5
Knihovny.cz E-zdroje
- Klíčová slova
- PAS domain, basic helix–loop–helix/transcription factor, hormone receptor, insect, juvenile hormone, ligand-binding protein, methoprene, nuclear translocation, protein phosphorylation, protein purification,
- MeSH
- Aedes genetika metabolismus MeSH
- fosforylace MeSH
- hmyzí proteiny genetika metabolismus MeSH
- juvenilní hormony metabolismus MeSH
- posttranslační úpravy proteinů * MeSH
- receptory buněčného povrchu genetika metabolismus MeSH
- Sf9 buňky MeSH
- Spodoptera MeSH
- Tribolium genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hmyzí proteiny MeSH
- juvenilní hormony MeSH
- receptory buněčného povrchu MeSH
Juvenile hormone (JH) plays vital roles in insect reproduction, development, and in many aspects of physiology. JH primarily acts at the gene-regulatory level through interaction with an intracellular receptor (JH receptor [JHR]), a ligand-activated complex of transcription factors consisting of the JH-binding protein methoprene-tolerant (MET) and its partner taiman (TAI). Initial studies indicated significance of post-transcriptional phosphorylation, subunit assembly, and nucleocytoplasmic transport of JHR in JH signaling. However, our knowledge of JHR regulation at the protein level remains rudimentary, partly because of the difficulty of obtaining purified and functional JHR proteins. Here, we present a method for high-yield expression and purification of JHR complexes from two insect species, the beetle T. castaneum and the mosquito Aedes aegypti. Recombinant JHR subunits from each species were coexpressed in an insect cell line using a baculovirus system. MET-TAI complexes were purified through affinity chromatography and anion exchange columns to yield proteins capable of binding both the hormonal ligand (JH III) and DNA bearing cognate JH-response elements. We further examined the beetle JHR complex in greater detail. Biochemical analyses and MS confirmed that T. castaneum JHR was a 1:1 heterodimer consisting of MET and Taiman proteins, stabilized by the JHR agonist ligand methoprene. Phosphoproteomics uncovered multiple phosphorylation sites in the MET protein, some of which were induced by methoprene treatment. Finally, we report a functional bipartite nuclear localization signal, straddled by phosphorylated residues, within the disordered C-terminal region of MET. Our present characterization of the recombinant JHR is an initial step toward understanding JHR structure and function.
Biology Center Czech Academy of Sciences Institute of Entomology Ceske Budejovice Czech Republic
CSIRO Health and Biosecurity CSIRO North Ryde New South Wales Australia
CSIRO Manufacturing CSIRO Parkville Victoria Australia
School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
Zobrazit více v PubMed
Jindra M., Palli S.R., Riddiford L.M. The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 2013;58:181–204. PubMed
Yamanaka N., Rewitz K.F., O'Connor M.B. Ecdysone control of developmental transitions: Lessons from Drosophila research. Annu. Rev. Entomol. 2013;58:497–516. PubMed PMC
Nijhout H. Princeton University Press; Princeton, NJ: 1994. Insect Hormones.
Flatt T., Tu M.-P., Tatar M. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays. 2005;27:999–1010. PubMed
Roy S., Saha T.T., Zou Z., Raikhel A.S. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 2018;63:489–511. PubMed
Santos C.G., Humann F.C., Hartfelder K. Juvenile hormone signaling in insect oogenesis. Curr. Opin. Insect Sci. 2019;31:43–48. PubMed
Bellés X. Elsevier Inc; London: 2020. Insect Metamorphosis: From Natural History to Regulation of Development and Evolution.
Koelle M.R., Talbot W.S., Segraves W.A., Bender M.T., Cherbas P., Hogness D.S. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell. 1991;67:59–77. PubMed
Thomas H.E., Stunnenberg H.G., Stewart A.F. Heterodimerization of the Drosophila ecdysone receptor with retinoid X receptor and ultraspiracle. Nature. 1993;362:471–475. PubMed
Yao T.P., Forman B.M., Jiang Z., Cherbas L., Chen J.D., McKeown M., Cherbas P., Evans R.M. Functional ecdysone receptor is the product of EcR and ultraspiracle genes. Nature. 1993;366:476–479. PubMed
Hill R.J., Billas I.M.L., Bonneton F., Graham L.D., Lawrence M.C. Ecdysone receptors: From the Ashburner model to structural biology. Annu. Rev. Entomol. 2013;58:251–271. PubMed
Hill R.J., Graham L.D., Turner K.A., Howell L., Tohidi-Esfahani D., Fernley R., Grusovin J., Ren B., Pilling P., Lu L., Phan T., Pollard G.O.L., Pawlak-Skrzecz A., Streltsov V.A., Peat T.S., et al. Structure and function of ecdysone receptors-interactions with ecdysteroids and synthetic agonists. Adv. Insect Physiol. 2012;43:299–351.
Riddiford L.M. Rhodnius, golden oil, and Met: A history of juvenile hormone research. Front. Cell Dev. Biol. 2020;8:679. PubMed PMC
Jones G., Jones D., Li X., Tang L., Ye L., Teal P., Riddiford L., Sandifer C., Borovsky D., Martin J.-R. Activities of natural methyl farnesoids on pupariation and metamorphosis of Drosophila melanogaster. J. Insect Physiol. 2010;56:1456–1464. PubMed
Billas I.M.L., Iwema T., Garnier J.-M., Mitschler A., Rochel N., Moras D. Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor. Nature. 2003;426:91–96. PubMed
Carmichael J.A. The X-ray structure of a hemipteran ecdysone receptor ligand-binding domain: Comparison with a lepidopteran ecdysone receptor ligand-binding domain and implications for insecticide design. J. Biol. Chem. 2005;280:22258–22269. PubMed
Ren B., Peat T.S., Streltsov V.A., Pollard M., Fernley R., Grusovin J., Seabrook S., Pilling P., Phan T., Lu L., Lovrecz G.O., Graham L.D., Hill R.J. Unprecedented conformational flexibility revealed in the ligand-binding domains of the Bovicola ovis ecdysone receptor (EcR) and ultraspiracle (USP) subunits. Acta Crystallogr. D Biol. Crystallogr. 2014;70:1954–1964. PubMed
Wilson T.G., Fabian J. A Drosophila melanogaster mutant resistant to a chemical analog of juvenile hormone. Dev. Biol. 1986;118:190–201. PubMed
Wilson T.G., Ashok M. Insecticide resistance resulting from an absence of target-site gene product. Proc. Natl. Acad. Sci. U. S. A. 1998;95:14040–14044. PubMed PMC
Moore A.W., Barbel S., Jan L.Y., Jan Y.N. A genomewide survey of basic helix-loop-helix factors in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 2000;97:10436–10441. PubMed PMC
Jindra M., Tumova S., Milacek M., Bittova L. A decade with the juvenile hormone receptor. Adv. Insect Physiol. 2021;60:37–85.
Miura K., Oda M., Makita S., Chinzei Y. Characterization of the Drosophila methoprene-tolerantgene product. FEBS J. 2005;272:1169–1178. PubMed
Charles J.-P., Iwema T., Epa V.C., Takaki K., Rynes J., Jindra M. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc. Natl. Acad. Sci. U. S. A. 2011;108:21128–21133. PubMed PMC
Li M., Liu P., Wiley J.D., Ojani R., Bevan D.R., Li J., Zhu J. A steroid receptor coactivator acts as the DNA-binding partner of the methoprene-tolerant protein in regulating juvenile hormone response genes. Mol. Cell. Endocrinol. 2014;394:47–58. PubMed PMC
Jindra M., Uhlirova M., Charles J.-P., Smykal V., Hill R.J. Genetic evidence for function of the bHLH-PAS protein Gce/Met as a juvenile hormone receptor. PLoS Genet. 2015;11 PubMed PMC
Bittova L., Jedlička P., Dracinsky M., Kirubakaran P., Vondrasek J., Hanus R., Jindra M. Exquisite ligand stereoselectivity of a Drosophila juvenile hormone receptor contrasts with its broad agonist repertoire. J. Biol. Chem. 2019;294:410–423. PubMed PMC
Abdou M.A., He Q., Wen D., Zyaan O., Wang J., Xu J., Baumann A.A., Joseph J., Wilson T.G., Li S., Wang J. Drosophila Met and Gce are partially redundant in transducing juvenile hormone action. Insect Biochem. Mol. Biol. 2011;41:938–945. PubMed
Konopova B., Jindra M. Juvenile hormone resistance gene Methoprene-tolerant controls entry into metamorphosis in the beetle Tribolium castaneum. Proc. Natl. Acad. Sci. U. S. A. 2007;104:10488–10493. PubMed PMC
Konopova B., Smykal V., Jindra M. Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PLoS One. 2011;6 PubMed PMC
Lozano J., Bellés X. Role of Methoprene-tolerant (Met) in adult morphogenesis and in adult ecdysis of Blattella germanica. PLoS One. 2014;9 PubMed PMC
Daimon T., Uchibori M., Nakao H., Sezutsu H., Shinoda T. Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle. Proc. Natl. Acad. Sci. U. S. A. 2015;112:E4226–E4235. PubMed PMC
Minakuchi C., Namiki T., Shinoda T. Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Dev. Biol. 2009;325:341–350. PubMed
Kayukawa T., Minakuchi C., Namiki T., Togawa T., Yoshiyama M., Kamimura M., Mita K., Imanishi S., Kiuchi M., Ishikawa Y., Shinoda T. Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proc. Natl. Acad. Sci. U. S. A. 2012;109:11729–11734. PubMed PMC
Kayukawa T., Jouraku A., Ito Y., Shinoda T. Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval-adult metamorphosis. Proc. Natl. Acad. Sci. U. S. A. 2017;114:1057–1062. PubMed PMC
Lozano J., Bellés X. Conserved repressive function of Krüppel homolog 1 on insect metamorphosis in hemimetabolous and holometabolous species. Sci. Rep. 2011;1:163. PubMed PMC
Jindra M. Where did the pupa come from? The timing of juvenile hormone signalling supports homology between stages of hemimetabolous and holometabolous insects. Phil. Trans. R. Soc. Lond. B Biol. Sci. 2019;374:20190064. PubMed PMC
Truman J.W. The evolution of insect metamorphosis. Curr. Biol. 2019;29:R1252–R1268. PubMed
Kewley R.J., Whitelaw M.L., Chapman-Smith A. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int. J. Biochem. Cell Biol. 2004;36:189–204. PubMed
Li M., Mead E.A., Zhu J. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc. Natl. Acad. Sci. U. S. A. 2011;108:638–643. PubMed PMC
Zhang Z., Xu J., Sheng Z., Sui Y., Palli S.R. Steroid receptor co-activator is required for juvenile hormone signal transduction through a bHLH-PAS transcription factor, methoprene tolerant. J. Biol. Chem. 2011;286:8437–8447. PubMed PMC
Bai J., Uehara Y., Montell D.J. Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell. 2000;103:1047–1058. PubMed
Zou Z., Saha T.T., Roy S., Shin S.W., Backman T.W.H., Girke T., White K.P., Raikhel A.S. Juvenile hormone and its receptor, methoprene-tolerant, control the dynamics of mosquito gene expression. Proc. Natl. Acad. Sci. U. S. A. 2013;110:E2173–E2181. PubMed PMC
Cui Y., Sui Y., Xu J., Zhu F., Palli S.R. Juvenile hormone regulates Aedes aegypti Krüppel homolog 1 through a conserved E box motif. Insect Biochem. Mol. Biol. 2014;52:23–32. PubMed PMC
Lozano J., Kayukawa T., Shinoda T., Bellés X. A role for taiman in insect metamorphosis. PLoS Genet. 2014;10 PubMed PMC
Yokoi T., Nabe T., Ishizuka C., Hayashi K., Ito-Harashima S., Yagi T., Nakagawa Y., Miyagawa H. Transcription-inducing activity of natural and synthetic juvenile hormone agonists through the Drosophila Methoprene-tolerant protein. Pest Manag. Sci. 2020;76:2316–2323. PubMed
Yamamoto K., Chadarevian A., Pellegrini M. Juvenile hormone action mediated in male accessory glands of Drosophila by calcium and kinase C. Science. 1988;239:916–919. PubMed
Wilson T.G., DeMoor S., Lei J. Juvenile hormone involvement in Drosophila melanogaster male reproduction as suggested by the Methoprene-tolerant27 mutant phenotype. Insect Biochem. Mol. Biol. 2003;33:1167–1175. PubMed
Liu P., Peng H.-J., Zhu J. Juvenile hormone-activated phospholipase C pathway enhances transcriptional activation by the methoprene-tolerant protein. Proc. Natl. Acad. Sci. U. S. A. 2015;112:E1871–E1879. PubMed PMC
Kim K., Albishi N.M., Palli S.R. Identification of juvenile hormone-induced posttranslational modifications of methoprene tolerant and Krüppel homolog 1 in the yellow fever mosquito, Aedes aegypti. J. Proteomics. 2021;242:104257. PubMed PMC
Kayukawa T., Tateishi K., Shinoda T. Establishment of a versatile cell line for juvenile hormone signaling analysis in Tribolium castaneum. Sci. Rep. 2013;3:1570. PubMed PMC
Graham L.D., Johnson W.M., Pawlak-Skrzecz A., Eaton R.E., Bliese M., Howell L., Hannan G.N., Hill R.J. Ligand binding by recombinant domains from insect ecdysone receptors. Insect Biochem. Mol. Biol. 2007;37:611–626. PubMed
Touhara K., Lerro K.A., Bonning B.C., Hammock B.D., Prestwich G.D. Ligand binding by a recombinant insect juvenile hormone binding protein. Biochemistry. 1993;32:2068–2075. PubMed
Kosugi S., Hasebe M., Tomita M., Yanagawa H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl. Acad. Sci. U. S. A. 2009;106:10171–10176. PubMed PMC
Shin S.W., Zou Z., Saha T.T., Raikhel A.S. bHLH-PAS heterodimer of methoprene-tolerant and cycle mediates circadian expression of juvenile hormone-induced mosquito genes. Proc. Natl. Acad. Sci. U. S. A. 2012;109:16576–16581. PubMed PMC
Miyakawa H., Iguchi T. Comparative luciferase assay for establishing reliable in vitro screening system of juvenile hormone agonists. J. Appl. Toxicol. 2017;37:1082–1090. PubMed
Picard D. Chaperoning steroid hormone action. Trends Endocrinol. Metab. 2006;17:229–235. PubMed
Arbeitman M.N., Hogness D.S. Molecular chaperones activate the Drosophila ecdysone receptor, an RXR heterodimer. Cell. 2000;101:67–77. PubMed
Pongratz I., Mason G.G., Poellinger L. Dual roles of the 90-kDa heat shock protein hsp90 in modulating functional activities of the dioxin receptor. J. Biol. Chem. 1992;267:13728–13734. PubMed
Whitelaw M.L., McGuire J., Picard D., Gustafsson J.A., Poellinger L. Heat shock protein hsp90 regulates dioxin receptor function in vivo. Proc. Natl. Acad. Sci. U. S. A. 1995;92:4437–4441. PubMed PMC
Soshilov A., Denison M.S. Ligand displaces heat shock protein 90 from overlapping binding sites within the aryl hydrocarbon receptor ligand-binding domain. J. Biol. Chem. 2011;286:35275–35282. PubMed PMC
Kazlauskas A., Sundström S., Poellinger L., Pongratz I. The hsp90 chaperone complex regulates intracellular localization of the dioxin receptor. Mol. Cell. Biol. 2001;21:2594–2607. PubMed PMC
Beischlag T.V., Morales J.L., Hollingshead B.D., Perdew G.H. The aryl hydrocarbon receptor complex and the control of gene expression. Crit. Rev. Eukaryot. Gene Expr. 2008;18:207–250. PubMed PMC
Denison M.S., Soshilov A.A., He G., DeGroot D.E., Zhao B. Exactly the same but different: Promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol. Sci. 2011;124:1–22. PubMed PMC
Soshilov A.A., Motta S., Bonati L., Denison M.S. Transitional states in ligand-dependent transformation of the aryl hydrocarbon receptor into its DNA-binding form. Int. J. Mol. Sci. 2020;21:2474. PubMed PMC
He Q., Wen D., Jia Q., Cui C., Wang J., Palli S.R., Li S. Heat shock protein 83 (Hsp83) facilitates Methoprene-tolerant (Met) nuclear import to modulate juvenile hormone signaling. J. Biol. Chem. 2014;289:27874–27885. PubMed PMC
Pursley S., Ashok M., Wilson T.G. Intracellular localization and tissue specificity of the Methoprene-tolerant (Met) gene product in Drosophila melanogaster. Insect Biochem. Mol. Biol. 2000;30:839–845. PubMed
He Q., Zhang Y., Zhang X., Xu D., Dong W., Li S., Wu R. Nucleoporin Nup358 facilitates nuclear import of Methoprene-tolerant (Met) in an importin β- and Hsp83-dependent manner. Insect Biochem. Mol. Biol. 2017;81:10–18. PubMed
Greb-Markiewicz B., Orłowski M., Dobrucki J., Ożyhar A. Sequences that direct subcellular traffic of the Drosophila Methoprene-tolerant protein (MET) are located predominantly in the PAS domains. Mol. Cell. Endocrinol. 2011;345:16–26. PubMed
Greb-Markiewicz B., Sadowska D., Surgut N., Godlewski J., Zarębski M., Ożyhar A. Mapping of the sequences directing localization of the Drosophila germ cell-expressed protein (GCE) PLoS One. 2015;10 PubMed PMC
Greb-Markiewicz B., Kolonko M. Subcellular localization signals of bHLH-PAS proteins: Their significance, current state of knowledge and future perspectives. Int. J. Mol. Sci. 2019;20:4746. PubMed PMC
Lange A., Mills R.E., Lange C.J., Stewart M., Devine S.E., Corbett A.H. Classical nuclear localization signals: Definition, function, and interaction with importin α. J. Biol. Chem. 2007;282:5101–5105. PubMed PMC
Kolonko M., Bystranowska D., Taube M., Kozak M., Bostock M., Popowicz G., Ożyhar A., Greb-Markiewicz B. The intrinsically disordered region of GCE protein adopts a more fixed structure by interacting with the LBD of the nuclear receptor FTZ-F1. Cell Commun. Signal. 2020;18:180. PubMed PMC
Ikuta T., Kobayashi Y., Kawajiri K. Phosphorylation of nuclear localization signal inhibits the ligand-dependent nuclear import of aryl hydrocarbon receptor. Biochem. Biophys. Res. Commun. 2004;317:545–550. PubMed
Davey K. Hormonal control of the follicular epithelium during vitellogenin uptake. Invertebr. Reprod. Dev. 1996;30:249–254.
Jing Y.-P., An H., Zhang S., Wang N., Zhou S. Protein kinase C mediates juvenile hormone-dependent phosphorylation of Na+/K+-ATPase to induce ovarian follicular patency for yolk protein uptake. J. Biol. Chem. 2018;293:20112–20122. PubMed PMC
Ojani R., Liu P., Fu X., Zhu J. Protein kinase C modulates transcriptional activation by the juvenile hormone receptor methoprene-tolerant. Insect Biochem. Mol. Biol. 2016;70:44–52. PubMed PMC
Li Y.-X., Wang D., Zhao W.-L., Zhang J.-Y., Kang X.-L., Li Y.-L., Zhao X.-F. Juvenile hormone induces methoprene-tolerant 1 phosphorylation to increase interaction with Taiman in Helicoverpa armigera. Insect Biochem. Mol. Biol. 2021;130:103519. PubMed
Bern M., Caval T., Kil Y.J., Tang W., Becker C., Carlson E., Kletter D., Sen K.I., Galy N., Hagemas D., Franc V., Heck A.J.R. Parsimonious charge deconvolution for native mass spectrometry. J. Proteome Res. 2018;17:1216–1226. PubMed PMC
Hughes C.S., Foehr S., Garfield D.A., Furlong E.E., Steinmetz L.M., Krijgsveld J. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 2014;10:757. PubMed PMC
Boersema P.J., Raijmakers R., Lemeer S., Mohammed S., Heck A.J.R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 2009;4:484–494. PubMed
Keller A., Nesvizhskii A.I., Kolker E., Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 2002;74:5383–5392. PubMed
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., Pérez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yilmaz S., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. PubMed PMC
Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. PubMed
Chen D., Shah A., Nguyen H., Loo D., Inder K.L., Hill M.M. Online quantitative proteomics p-value calculator for permutation-based statistical testing of peptide ratios. J. Proteome Res. 2014;13:4184–4191. PubMed
Folta-Stogniew E. In: Nedelkov D., Nelson R.W., editors. Vol 328. Humana Press Inc; Totowa, NJ: 2006. Oligomeric states of proteins determined by size-exclusion chromatography coupled with light scattering, absorbance, and refractive index detectors; pp. 97–112. (New and Emerging Proteomic Techniques). Methods Mol. Biol. PubMed
Ho S.N., Hunt H.D., Horton R.M., Pullen J.K., Pease L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989;77:51–59. PubMed
Silver K., Jiang H., Fu J., Phillips T.W., Beeman R.W., Park Y. The Tribolium castaneum cell line TcA: A new tool kit for cell biology. Sci. Rep. 2014;4:6840. PubMed PMC
Role of Methoprene-tolerant in the regulation of oogenesis in Dipetalogaster maxima