Exquisite ligand stereoselectivity of a Drosophila juvenile hormone receptor contrasts with its broad agonist repertoire
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30455350
PubMed Central
PMC6333893
DOI
10.1074/jbc.ra118.005992
PII: S0021-9258(20)40360-6
Knihovny.cz E-zdroje
- Klíčová slova
- Drosophila, basic helix-loop-helix transcription factor (bHLH), development, hormone receptor, insect, juvenile hormone (JH), ligand-binding protein, reproduction, stereoselectivity,
- MeSH
- Drosophila melanogaster chemie genetika metabolismus MeSH
- juvenilní hormony chemie metabolismus MeSH
- molekulární modely MeSH
- proteiny Drosophily metabolismus MeSH
- receptory buněčného povrchu metabolismus MeSH
- stereoizomerie MeSH
- transkripční faktory bHLH metabolismus MeSH
- transkripční faktory metabolismus MeSH
- vazba proteinů MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- gce protein, Drosophila MeSH Prohlížeč
- juvenilní hormony MeSH
- MET protein, Drosophila MeSH Prohlížeč
- proteiny Drosophily MeSH
- receptory buněčného povrchu MeSH
- transkripční faktory bHLH MeSH
- transkripční faktory MeSH
The sesquiterpenoid juvenile hormone (JH) is vital to insect development and reproduction. Intracellular JH receptors have recently been established as basic helix-loop-helix transcription factor (bHLH)/PAS proteins in Drosophila melanogaster known as germ cell-expressed (Gce) and its duplicate paralog, methoprene-tolerant (Met). Upon binding JH, Gce/Met activates its target genes. Insects possess multiple native JH homologs whose molecular activities remain unexplored, and diverse synthetic compounds including insecticides exert JH-like effects. How the JH receptor recognizes its ligands is unknown. To determine which structural features define an active JH receptor agonist, we tested several native JHs and their nonnative geometric and optical isomers for the ability to bind the Drosophila JH receptor Gce, to induce Gce-dependent transcription, and to affect the development of the fly. Our results revealed high ligand stereoselectivity of the receptor. The geometry of the JH skeleton, dictated by two stereogenic double bonds, was the most critical feature followed by the presence of an epoxide moiety at a terminal position. The optical isomerism at carbon C11 proved less important even though Gce preferentially bound a natural JH enantiomer. The results of receptor-ligand-binding and cell-based gene activation assays tightly correlated with the ability of different geometric JH isomers to induce gene expression and morphogenetic effects in the developing insects. Molecular modeling supported the requirement for the proper double-bond geometry of JH, which appears to be its major selective mechanism. The strict stereoselectivity of Gce toward the natural hormone contrasts with the high potency of synthetic Gce agonists of disparate chemistries.
Zobrazit více v PubMed
Jindra M., Palli S. R., and Riddiford L. M. (2013) The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 58, 181–204 10.1146/annurev-ento-120811-153700 PubMed DOI
Roy S., Saha T. T., Zou Z., and Raikhel A. S. (2018) Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 63, 489–511 10.1146/annurev-ento-020117-043258 PubMed DOI
Koelle M. R., Talbot W. S., Segraves W. A., Bender M. T., Cherbas P., and Hogness D. S. (1991) The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67, 59–77 10.1016/0092-8674(91)90572-G PubMed DOI
Hill R. J., Billas I. M., Bonneton F., Graham L. D., and Lawrence M. C. (2013) Ecdysone receptors: from the Ashburner model to structural biology. Annu. Rev. Entomol. 58, 251–271 10.1146/annurev-ento-120811-153610 PubMed DOI
Charles J.-P., Iwema T., Epa V. C., Takaki K., Rynes J., and Jindra M. (2011) Ligand-binding properties of a juvenile hormone receptor, methoprene-tolerant. Proc. Natl. Acad. Sci. U.S.A. 108, 21128–21133 10.1073/pnas.1116123109 PubMed DOI PMC
Jindra M., Uhlirova M., Charles J.-P., Smykal V., and Hill R. J. (2015) Genetic evidence for function of the bHLH-PAS protein Gce/Met as a juvenile hormone receptor. PLoS Genet. 11, e1005394 10.1371/journal.pgen.1005394 PubMed DOI PMC
Jindra M., Bellés X., and Shinoda T. (2015) Molecular basis of juvenile hormone signaling. Curr. Opin. Insect Sci. 11, 39–46 10.1016/j.cois.2015.08.004 PubMed DOI
Ashok M., Turner C., and Wilson T. G. (1998) Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. Proc. Natl. Acad. Sci. U.S.A. 95, 2761–2766 10.1073/pnas.95.6.2761 PubMed DOI PMC
Kewley R. J., Whitelaw M. L., and Chapman-Smith A. (2004) The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int. J. Biochem. Cell Biol. 36, 189–204 10.1016/S1357-2725(03)00211-5 PubMed DOI
Denison M. S., and Faber S. C. (2017) And now for something completely different: diversity in ligand-dependent activation of Ah receptor responses. Curr. Opin. Toxicol. 2, 124–131 10.1016/j.cotox.2017.01.006 PubMed DOI PMC
Stockinger B., Di Meglio P., Gialitakis M., and Duarte J. H. (2014) The aryl hydrocarbon receptor: multitasking in the immune system. Annu. Rev. Immunol. 32, 403–432 10.1146/annurev-immunol-032713-120245 PubMed DOI
Li M., Mead E. A., and Zhu J. (2011) Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc. Natl. Acad. Sci. U.S.A. 108, 638–643 10.1073/pnas.1013914108 PubMed DOI PMC
Kayukawa T., Minakuchi C., Namiki T., Togawa T., Yoshiyama M., Kamimura M., Mita K., Imanishi S., Kiuchi M., Ishikawa Y., and Shinoda T. (2012) Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proc. Natl. Acad. Sci. U.S.A. 109, 11729–11734 10.1073/pnas.1204951109 PubMed DOI PMC
Kayukawa T., Tateishi K., and Shinoda T. (2013) Establishment of a versatile cell line for juvenile hormone signaling analysis in Tribolium castaneum. Sci. Rep. 3, 1570 10.1038/srep01570 PubMed DOI PMC
Goodman W. G., and Cusson M. (2012) The juvenile hormones, in Insect Endocrinology (Gilbert L. I., ed) pp. 310–365, Elsevier, Amsterdam
Parthasarathy R., Farkaš R., and Palli S. R. (2012) Recent progress in juvenile hormone analogs (JHA) research. Adv. Insect Physiol. 43, 353–436 10.1016/B978-0-12-391500-9.00005-X DOI
Miura K., Oda M., Makita S., and Chinzei Y. (2005) Characterization of the Drosophila methoprene-tolerant gene product. FEBS J. 272, 1169–1178 10.1111/j.1742-4658.2005.04552.x PubMed DOI
Li M., Liu P., Wiley J. D., Ojani R., Bevan D. R., Li J., and Zhu J. (2014) A steroid receptor coactivator acts as the DNA-binding partner of the methoprene-tolerant protein in regulating juvenile hormone response genes. Mol. Cell. Endocrinol. 394, 47–58 10.1016/j.mce.2014.06.021 PubMed DOI PMC
Zhang Z., Xu J., Sheng Z., Sui Y., and Palli S. R. (2011) Steroid receptor co-activator is required for juvenile hormone signal transduction through a bHLH-PAS transcription factor, methoprene tolerant. J. Biol. Chem. 286, 8437–8447 10.1074/jbc.M110.191684 PubMed DOI PMC
Minakuchi C., Zhou X., and Riddiford L. M. (2008) Krüppel homolog 1 (Kr-h1) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster. Mech. Dev. 125, 91–105 10.1016/j.mod.2007.10.002 PubMed DOI PMC
Minakuchi C., Namiki T., and Shinoda T. (2009) Krüppel homolog 1, an early juvenile hormone-response gene downstream of methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Dev. Biol. 325, 341–350 10.1016/j.ydbio.2008.10.016 PubMed DOI
Konopova B., Smykal V., and Jindra M. (2011) Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PLoS One 6, e28728 10.1371/journal.pone.0028728 PubMed DOI PMC
Lozano J., and Belles X. (2011) Conserved repressive function of Krüppel homolog 1 on insect metamorphosis in hemimetabolous and holometabolous species. Sci. Rep. 1, 163 10.1038/srep00163 PubMed DOI PMC
Kayukawa T., Nagamine K., Ito Y., Nishita Y., Ishikawa Y., and Shinoda T. (2016) Krüppel homolog 1 inhibits insect metamorphosis via direct transcriptional repression of Broad-Complex, a pupal specifier gene. J. Biol. Chem. 291, 1751–1762 10.1074/jbc.M115.686121 PubMed DOI PMC
Zou Z., Saha T. T., Roy S., Shin S. W., Backman T. W., Girke T., White K. P., and Raikhel A. S. (2013) Juvenile hormone and its receptor, methoprene-tolerant, control the dynamics of mosquito gene expression. Proc. Natl. Acad. Sci. U.S.A. 110, E2173–81 10.1073/pnas.1305293110 PubMed DOI PMC
Saha T. T., Shin S. W., Dou W., Roy S., Zhao B., Hou Y., Wang X.-L., Zou Z., Girke T., and Raikhel A. S. (2016) Hairy and Groucho mediate the action of juvenile hormone receptor methoprene-tolerant in gene repression. Proc. Natl. Acad. Sci. U.S.A. 113, E735–E743 10.1073/pnas.1523838113 PubMed DOI PMC
Cusson M., Yagi K. J., Ding Q., Duve H., Thorpe A., McNeil J. N., and Tobe S. S. (1991) Biosynthesis and release of juvenile hormone and its precursors in insects and crustaceans: the search for a unifying arthropod endocrinology. Insect Biochem. 21, 1–6 10.1016/0020-1790(91)90058-M DOI
Kotaki T., Shinada T., Kaihara K., Ohfune Y., and Numata H. (2009) Structure determination of a new juvenile hormone from a heteropteran insect. Org. Lett. 11, 5234–5237 10.1021/ol902161x PubMed DOI PMC
Richard D. S., Applebaum S. W., Sliter T. J., Baker F. C., Schooley D. A., Reuter C. C., Henrich V. C., and Gilbert L. I. (1989) Juvenile hormone bisepoxide biosynthesis in vitro by the ring gland of Drosophila melanogaster: a putative juvenile hormone in the higher Diptera. Proc. Natl. Acad. Sci. U.S.A. 86, 1421–1425 10.1073/pnas.86.4.1421 PubMed DOI PMC
Yin C.-M., Zou B.-X., Jiang M., Li M.-F., Qin W., Potter T. L., and Stoffolano J. G. Jr. (1995) Identification of juvenile hormone III bisepoxide (JHB 3), juvenile hormone III and methyl farnesoate secreted by the corpus allatum of Phormia regina (Meigen), in vitro and function of JHB 3 either applied alone or as a part of a juvenoid blend. J. Insect Physiol. 41, 473–479 10.1016/0022-1910(94)00134-3 DOI
Jones D., Jones G., and Teal P. E. (2013) Sesquiterpene action, and morphogenetic signaling through the ortholog of retinoid X receptor, in higher Diptera. Gen. Comp. Endocrinol. 194, 326–335 10.1016/j.ygcen.2013.09.021 PubMed DOI
Wen D., Rivera-Perez C., Abdou M., Jia Q., He Q., Liu X., Zyaan O., Xu J., Bendena W. G., Tobe S. S., Noriega F. G., Palli S. R., Wang J., and Li S. (2015) Methyl farnesoate plays a dual role in regulating Drosophila metamorphosis. PLoS Genet. 11, e1005038 10.1371/journal.pgen.1005038 PubMed DOI PMC
Dahm K. H., Röller H., and Trost B. M. (1968) The juvenile hormone: IV. Stereochemistry of JH and biological activity of some of its isomers and related compounds. Life Sci. II 7, 129–137 PubMed
Meyer A. S., Hanzmann E., and Murphy R. C. (1971) Absolute configuration of Cecropia juvenile hormone. Proc. Natl. Acad. Sci. U.S.A. 68, 2312–2315 10.1073/pnas.68.9.2312 PubMed DOI PMC
Judy K. J., Schooley D. A., Dunham L. L., Hall M. S., Bergot B. J., and Siddall J. B. (1973) Isolation, structure, and absolute configuration of a new natural insect juvenile hormone from Manduca sexta. Proc. Natl. Acad. Sci. U.S.A. 70, 1509–1513 10.1073/pnas.70.5.1509 PubMed DOI PMC
Röller H., and Dahm K. H. (1968) The chemistry and biology of juvenile hormone. Rec. Prog. Horm. Res. 24, 651–680 PubMed
Westermann J., Rose M., Trautmann H., Schmialek P., and Klauske J. (1969) [Compounds with juvenile hormone activity. II. Dose-effect relationships of substances with juvenile hormone activity]. Z. Naturforsch. B 24, 378–380 10.1515/znb-1969-0402 PubMed DOI
Wigglesworth V. (1969) Chemical structure and juvenile hormone activity: Comparative tests on Rhodnius prolixus. J. Insect Physiol. 15, 73–94 10.1016/0022-1910(69)90213-3 DOI
Pfiffner A. (1971) Juvenile hormones, in Aspects of Terpenoid Chemistry and Biochemistry (Goodwin T. W., ed) pp. 95–136, Academic Press, London
Romanuk M., and Slama K. (1974) Structure-Activity Relationships, in Insect Hormones and Bioanalogues (Slama K., Romanuk M., and Sorm F., eds) pp. 194–217, Springer Verlag, New York
Peterson R. C., Reich M. F., Dunn P. E., Law J. H., and Katzenellnbogen J. A. (1977) Binding specificity of the juvenile hormone carrier protein from the hemolymph of the tobacco hornworm Manduca sexta. Biochemistry 16, 2305–2311 10.1021/bi00629a040 PubMed DOI
Schooley D. A., Bergot B. J., Goodman W. G., and Gilbert L. I. (1978) Synthesis of both optical isomers of insect juvenile hormone III and their affinity for the juvenile hormone-specific binding protein of Manduca sexta. Biochem. Biophys. Res. Commun. 81, 743–749 10.1016/0006-291X(78)91414-6 PubMed DOI
Goodman W., Schooley D. A., and Gilbert L. I. (1978) Specificity of the juvenile hormone binding protein: the geometrical isomers of juvenile hormone I. Proc. Natl. Acad. Sci. U.S.A. 75, 185–189 10.1073/pnas.75.1.185 PubMed DOI PMC
Prestwich G. D., and Wawrzeńczyk C. (1985) High specific activity enantiomerically enriched juvenile hormones: synthesis and binding assay. Proc. Natl. Acad. Sci. U.S.A. 82, 5290–5294 10.1073/pnas.82.16.5290 PubMed DOI PMC
Prestwich G. D., Robles S., Wawrzeńczyk C., and Buhler A. (1987) Hemolymph juvenile hormone binding proteins of lepidopterous larvae: enantiomeric selectivity and photoaffinity labeling. Insect Biochem. 17, 551–560 10.1016/0020-1790(87)90054-0 DOI
Ozyhar A., and Kochman M. (1987) Juvenile-hormone-binding protein from the hemolymph of Galleria mellonella (L). Isolation and characterization. Eur. J. Biochem. 162, 675–682 10.1111/j.1432-1033.1987.tb10690.x PubMed DOI
Harshman L. G., Song K.-D., Casas J., Schuurmans A., Kuwano E., Kachman S. D., Riddiford L. M., and Hammock B. D. (2010) Bioassays of compounds with potential juvenoid activity on Drosophila melanogaster: juvenile hormone III, bisepoxide juvenile hormone III and methyl farnesoates. J. Insect Physiol. 56, 1465–1470 10.1016/j.jinsphys.2010.06.003 PubMed DOI PMC
Miyakawa H., and Iguchi T. (2017) Comparative luciferase assay for establishing reliable in vitro screening system of juvenile hormone agonists. J. Appl. Toxicol. 37, 1082–1090 10.1002/jat.3459 PubMed DOI
Helvig C., Koener J. F., Unnithan G. C., and Feyereisen R. (2004) CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proc. Natl. Acad. Sci. U.S.A. 101, 4024–4029 10.1073/pnas.0306980101 PubMed DOI PMC
Daimon T., Kozaki T., Niwa R., Kobayashi I., Furuta K., Namiki T., Uchino K., Banno Y., Katsuma S., Tamura T., Mita K., Sezutsu H., Nakayama M., Itoyama K., Shimada T., et al. (2012) Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori. PLoS Genet. 8, e1002486 10.1371/journal.pgen.1002486 PubMed DOI PMC
Ichikawa A., Ono H., Furuta K., Shiotsuki T., and Shinoda T. (2007) Enantioselective separation of racemic juvenile hormone III by normal-phase high-performance liquid chromatography and preparation of [2H3]juvenile hormone III as an internal standard for liquid chromatography-mass spectrometry quantification. J. Chromatogr. A 1161, 252–260 10.1016/j.chroma.2007.06.003 PubMed DOI
He Q., Wen D., Jia Q., Cui C., Wang J., Palli S. R., and Li S. (2014) Heat shock protein 83 (Hsp83) facilitates methoprene-tolerant (Met) nuclear import to modulate juvenile hormone signaling. J. Biol. Chem. 289, 27874–27885 10.1074/jbc.M114.582825 PubMed DOI PMC
Riddiford L. M., and Ashburner M. (1991) Effects of juvenile hormone mimics on larval development and metamorphosis of Drosophila melanogaster. Gen. Comp. Endocrinol. 82, 172–183 10.1016/0016-6480(91)90181-5 PubMed DOI
Zhou X., and Riddiford L. M. (2002) Broad specifies pupal development and mediates the “status quo” action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Development 129, 2259–2269 PubMed
Wimmer Z., Rejzek M., Zarevucka M., Kuldova J., Hrdy I., Nemec V., and Romanuk M. (1997) A series of bicyclic insect juvenile hormone analogs of Czech origin: twenty years of development. J. Chem. Ecol. 23, 605–628 10.1023/B:JOEC.0000006399.07779.16 DOI
Jones G., Teal P., Henrich V. C., Krzywonos A., Sapa A., Wozniak M., Smolka J., and Jones D. (2013) Ligand binding pocket function of Drosophila USP is necessary for metamorphosis. Gen. Comp. Endocrinol. 182, 73–82 10.1016/j.ygcen.2012.11.009 PubMed DOI
Kolodziejczyk R., Bujacz G., Jakób M., Ozyhar A., Jaskolski M., and Kochman M. (2008) Insect juvenile hormone binding protein shows ancestral fold present in human lipid-binding proteins. J. Mol. Biol. 377, 870–881 10.1016/j.jmb.2008.01.026 PubMed DOI
Dundas J., Ouyang Z., Tseng J., Binkowski A., Turpaz Y., and Liang J. (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34, W116–W118 10.1093/nar/gkl282 PubMed DOI PMC
Kim I. H., Pham V., Jablonka W., Goodman W. G., Ribeiro J. M. C., and Andersen J. F. (2017) A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone. J. Biol. Chem. 292, 15329–15339 10.1074/jbc.M117.802009 PubMed DOI PMC
Suzuki R., Fujimoto Z., Shiotsuki T., Tsuchiya W., Momma M., Tase A., Miyazawa M., and Yamazaki T. (2011) Structural mechanism of JH delivery in hemolymph by JHBP of silkworm, Bombyx mori. Sci. Rep. 1, 133 10.1038/srep00133 PubMed DOI PMC
Graham L. D., Johnson W. M., Pawlak-Skrzecz A., Eaton R. E., Bliese M., Howell L., Hannan G. N., and Hill R. J. (2007) Ligand binding by recombinant domains from insect ecdysone receptors. Insect Biochem. Mol. Biol. 37, 611–626 10.1016/j.ibmb.2007.03.006 PubMed DOI
Touhara K., Lerro K. A., Bonning B. C., Hammock B. D., and Prestwich G. D. (1993) Ligand binding by a recombinant insect juvenile hormone binding protein. Biochemistry 32, 2068–2075 10.1021/bi00059a026 PubMed DOI
Chemical Computing Group ULC (2017) Molecular Operating Environment (MOE) 2013.08, Chemical Computing Group ULC, Montreal, Quebec, Canada
Scheuermann T. H., Tomchick D. R., Machius M., Guo Y., Bruick R. K., and Gardner K. H. (2009) Artificial ligand binding within the HIF2α PAS-B domain of the HIF2 transcription factor. Proc. Natl. Acad. Sci. U.S.A. 106, 450–455 10.1073/pnas.0808092106 PubMed DOI PMC
Schrödinger, LLC (2014) Protein Preparation Wizard 2014-4, Schrödinger, LLC, New York
Schrödinger, LLC (2014) Epik, version 2.4, Schrödinger, LLC, New York
Schrödinger, LLC (2014) Impact, version 5.9, Schrödinger, LLC, New York
Schrödinger, LLC (2014) Prime, version 3.2, Schrödinger, LLC, New York
Schrödinger, LLC (2014) LigPrep, version 3.2, Schrödinger, LLC, New York
Schrödinger, LLC (2014) Glide, version 6.5, Schrödinger, LLC, New York
Role of Methoprene-tolerant in the regulation of oogenesis in Dipetalogaster maxima
Epoxidation of juvenile hormone was a key innovation improving insect reproductive fitness
New ways and new hopes for IGR development
Approaches and Tools to Study the Roles of Juvenile Hormones in Controlling Insect Biology
PDB
3F1P