New ways and new hopes for IGR development
Status PubMed-not-MEDLINE Jazyk angličtina Země Japonsko Médium print
Typ dokumentu časopisecké články
PubMed
33746540
PubMed Central
PMC7953020
DOI
10.1584/jpestics.m21-03
Knihovny.cz E-zdroje
- Klíčová slova
- biosynthesis, ecdysone, juvenile hormone, metamorphosis, molting, receptors,
- Publikační typ
- časopisecké články MeSH
Insect Growth Regulators (IGRs) represent advanced, bio-rational insecticides. This Special Issue reflects progress in IGR development that has been enabled by insight into the molecular principles of biosynthetic or hormone signaling pathways. The unifying principle is aiming at processes and molecular targets that are unique to arthropods and ideally to narrower insect taxa representing pests or disease vectors. While some strategies of obtaining the desired compounds for chemical intervention rely on rational, structure-based design or computational power, others exploit technologies allowing automated, high-throughput screening of large chemical libraries. All avenues leading to selective and environmentally safe pest control are valid as we face the imminent threat of the declining world insect population.
Zobrazit více v PubMed
D. L. Wagner, E. M. Grames, M. L. Forister, M. R. Berenbaum and D. Stopak: Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. U.S.A. 118, e2023989118 (2021). PubMed PMC
Y. Li, L. Liu, J. Yang and Q. Yang: An overall look at insect chitin deacetylases: Promising molecular targets for developing green pesticides. J. Pestic. Sci., 46, 43–52 (2021). PubMed PMC
Y. Mushiake, A. Tsuchida, A. Yamada, H. Kanzaki, T. Okuda and T. Nitoda: New analogs of pochonicine, a potent β-N-acetylglucosaminidase inhibitor from fungus Pochonia suchlasporia var. suchlasporia TAMA 87. J. Pestic. Sci., 46, 115–119 (2021). PubMed PMC
K. Mori, H. Tokuoka, H. Miyagawa and Y. Nakagawa: Isoxaben analogs inhibit chitin synthesis in the cultured integument of the rice stem borer (Chilo suppressalis). J. Pestic. Sci., 46, 120–123 (2021). PubMed PMC
I. M. L. Billas, T. Iwema, J. M. Garnier, A. Mitschler, N. Rochel and D. Moras: Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor. Nature 426, 91–96 (2003). PubMed
J. A. Carmichael, M. C. Lawrence, L. D. Graham, P. A. Pilling, V. C. Epa, L. Noyce, G. Lovrecz, D. A. Winkler, A. Pawlak-Skrzecz, R. E. Eaton, G. N. Hannan and R. J. Hill: The X-ray structure of a hemipteran ecdysone receptor ligand-binding domain: Comparison with a lepidopteran ecdysone receptor ligand-binding domain and implications for insecticide design. J. Biol. Chem. 280, 22258–22269 (2005). PubMed
R. J. Hill, I. M. L. Billas, F. Bonneton, L. D. Graham and M. C. Lawrence: Ecdysone receptors: From the Ashburner model to structural biology. Annu. Rev. Entomol. 58, 251–271 (2013). PubMed
J.-P. Charles, T. Iwema, V. C. Epa, K. Takaki, J. Rynes and M. Jindra: Ligand binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc. Natl. Acad. Sci. U.S.A. 108, 21128–21133 (2011). PubMed PMC
T. Kayukawa, C. Minakuchi, T. Namiki, T. Togawa, M. Yoshiyama, M. Kamimura, K. Mita, S. Imanishi, M. Kiuchi, Y. Ishikawa and T. Shinoda: Transcriptional regulation of juvenile hormone-1 mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proc. Natl. Acad. Sci. U.S.A. 109, 11729–11734 (2012). PubMed PMC
M. Jindra, X. Bellés and T. Shinoda: Molecular basis of juvenile hormone signaling. Curr. Opin. Insect Sci. 11, 39–46 (2015). PubMed
M.-È. Picard, M. Cusson, S. S. Sen and R. Shi: Rational design of Lepidoptera-specific insecticidal inhibitors targeting farnesyl diphosphate synthase, a key enzyme of the juvenile hormone biosynthetic pathway. J. Pestic. Sci., 46, 7–15 (2021). PubMed PMC
W. G. Goodman and M. Cusson: The juvenile hormones. In “Insect Endocrinology,” ed. by L. I. Gilbert, Elsevier, Amsterdam, pp. 310–365 (2012).
M.-È. Picard, A. Nisole, C. Béliveau, S. E. Sen, A. Barbar, R. Shi and M. Cusson: Structural characterization of a lepidopteran type-II farnesyl diphosphate synthase from the spruce budworm, Choristoneura fumiferana: Implications for inhibitor design. Insect Biochem. Mol. Biol. 92, 84–92 (2018). PubMed
K. Koiwai, K. Morohashi, K. Inaba, K. Ebihara, H. Kojima, T. Okabe, R. Yoshino, T. Hirokawa, T. Nampo, Y. Fujikawa, H. Inoue, F. Yumoto, T. Senda and R. Niwa: Non-steroidal inhibitors of Drosophila melanogaster steroidogenic glutathione S-transferase Noppera-bo. J. Pestic. Sci., 46, 75–87 (2021). PubMed PMC
S. Enya, T. Ameku, F. Igarashi, M. Iga, H. Kataoka, T. Shinoda and R. Niwa: A Halloween gene noppera-bo encodes a glutathione S-transferase essential for ecdysteroid biosynthesis via regulating the behaviour of cholesterol in Drosophila. Sci. Rep. 4, 6586 (2014). PubMed PMC
N. Okamoto and N. Yamanaka: Transporter-mediated ecdysteroid trafficking across cell membranes: a novel target for insect growth regulators. J. Pestic. Sci., 46, 23–28 (2021). PubMed PMC
N. Okamoto, R. Viswanatha, R. Bittar, Z. Li, S. Haga-Yamanaka, N. Perrimon and N. Yamanaka: A membrane transporter is required for steroid hormone uptake in Drosophila. Dev. Cell 47, 294–305 (2018). PubMed PMC
N. Okamoto and N. Yamanaka: Steroid hormone entry into the brain requires a membrane transporter in Drosophila. Curr. Biol. 30, 359–366 (2020). PubMed PMC
C. Browning, A. G. McEwen, K. Mori, T. Yokoi, D. Moras, Y. Nakagawa and I. M. L. Billas: Nonsteroidal ecdysone receptor agonists use a water channel for binding to the ecdysone receptor complex EcR/USP. J. Pestic. Sci., 46, 88–100 (2021). PubMed PMC
M. Ueno, T. Yokoi, Y. Nakagawa and H. Miyagawa: Receptor-binding affinity and larvicidal activity of tetrahydroquinoline-type ecdysone agonists against Aedes albopictus. J. Pestic. Sci., 46, 101–108 (2021). PubMed PMC
S. Ito-Harashima and T. Yagi: Reporter gene assays for screening and identification of novel molting hormone- and juvenile hormone-like chemicals. J. Pestic. Sci., 46, 29–42 (2021). PubMed PMC
S.-H. Lee, H.-W. Oh, Y. Fang, S.-B. An, D.-S. Park, H.-H. Song, S.-R. Oh, S.-Y. Kim, S. Kim, N. Kim, A. S. Raikhel, Y. H. Je and S. W. Shin: Identification of plant compounds that disrupt the insect juvenile hormone receptor complex. Proc. Natl. Acad. Sci. U.S.A. 112, 1733–1738 (2015). PubMed PMC
T. Kayukawa, K. Furuta, K. Nagamine, T. Shinoda, K. Yonesu and T. Okabe: Identification of a juvenile-hormone signaling inhibitor via high-throughput screening of a chemical library. Sci. Rep. 10, 18413 (2020). PubMed PMC
T. Kayukawa, K. Furuta, K. Yonesu and T. Okabe: Identification of novel juvenile-hormone signaling activators via high-throughput screening with a chemical library. J. Pestic. Sci., 46, 53–59 (2021). PubMed PMC
L. Bittova, P. Jedlicka, M. Dracinsky, P. Kirubakaran, J. Vondrasek, R. Hanus and M. Jindra: Exquisite ligand stereoselectivity of a Drosophila juvenile hormone receptor contrasts with its broad agonist repertoire. J. Biol. Chem. 294, 410–423 (2019). PubMed PMC
M. Jindra and L. Bittova: The juvenile hormone receptor as a target of juvenoid “insect growth regulators”. Arch. Insect Biochem. Physiol. 103, e21615 (2020). PubMed
T. Yokoi, T. Nabe, S. Horoiwa, K. Hayashi, S. Ito-Harashima, T. Yagi, Y. Nakagawa and H. Miyagawa: Virtual screening identifies a novel piperazine-based insect juvenile hormone agonist. J. Pestic. Sci., 46, 68–74 (2021). PubMed PMC
T. Yokoi, T. Nabe, C. Ishizuka, K. Hayashi, S. Ito-Harashima, T. Yagi, Y. Nakagawa and H. Miyagawa: Transcription-inducing activity of natural and synthetic juvenile hormone agonists through the Drosophila Methoprene-tolerant protein. Pest Manag. Sci. 76, 2316–2323 (2020). PubMed
J. W. Truman and L. M. Riddiford: The origins of insect metamorphosis. Nature 401, 447–452 (1999). PubMed
M. Jindra: Where did the pupa come from? The timing of juvenile hormone signalling supports homology between stages of hemimetabolous and holometabolous insects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190064 (2019). PubMed PMC
D. F. Erezyilmaz, L. M. Riddiford and J. W. Truman: Juvenile hormone acts at embryonic molts and induces the nymphal cuticle in the direct-developing cricket. Dev. Genes Evol. 214, 313–323 (2004). PubMed
S. Naruse, M. Ogino, T. Nakagawa, Y. Yasuno, A. Jouraku, T. Shiotsuki, T. Shinoda, K. Miura and C. Minakuchi: Ovicidal activity of juvenile hormone mimics in the bean bug, Riptortus pedestris. J. Pestic. Sci., 46, 60–67 (2021). PubMed PMC
Y. Ando, K. Matsumoto, K. Misaki, G. Mano, S. Shiga, H. Numata, T. Kotaki, T. Shinada and S. G. Goto: Juvenile hormone III skipped bisepoxide, not its stereoisomers, as a juvenile hormone of the bean bug Riptortus pedestris. Gen. Comp. Endocrinol. 289, 113394 (2020). PubMed
R. Parthasarathy and S. R. Palli: Stage-specific action of juvenile hormone analogs. J. Pestic. Sci., 46, 16–22 (2021). PubMed PMC
E. Satoh, R. Kasahara, K. Fukatsu, T. Aoki, H. Harayama and T. Murata: Benzpyrimoxan: design, synthesis, and biological activity of a novel insecticide. J. Pestic. Sci., 46, 109–114 (2021). PubMed PMC