Where did the pupa come from? The timing of juvenile hormone signalling supports homology between stages of hemimetabolous and holometabolous insects

. 2019 Oct 14 ; 374 (1783) : 20190064. [epub] 20190826

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31438814

Insect metamorphosis boasts spectacular cases of postembryonic development when juveniles undergo massive morphogenesis before attaining the adult form and function; in moths or flies the larvae do not even remotely resemble their adult parents. A selective advantage of complete metamorphosis (holometaboly) is that within one species the two forms with different lifestyles can exploit diverse habitats. It was the environmental adaptation and specialization of larvae, primarily the delay and internalization of wing development, that eventually required an intermediate stage that we call a pupa. It is a long-held and parsimonious hypothesis that the holometabolous pupa evolved through modification of a final juvenile stage of an ancestor developing through incomplete metamorphosis (hemimetaboly). Alternative hypotheses see the pupa as an equivalent of all hemimetabolous moulting cycles (instars) collapsed into one, and consider any preceding holometabolous larval instars free-living embryos stalled in development. Discoveries on juvenile hormone signalling that controls metamorphosis grant new support to the former hypothesis deriving the pupa from a final pre-adult stage. The timing of expression of genes that repress and promote adult development downstream of hormonal signals supports homology between postembryonic stages of hemimetabolous and holometabolous insects. This article is part of the theme issue 'The evolution of complete metamorphosis'.

Zobrazit více v PubMed

Sehnal F, Svacha P, Zrzavy J. 1996. Evolution of insect metamorphosis. In Metamorphosis. Postembryonic reprogramming of gene expression in amphibian and insect cells (eds Gilbert LI, Tata JR, Atkinson BG), pp. 3–58. San Diego, CA: Academic Press.

Bishop CD, et al. 2006. What is metamorphosis? Integr. Comp. Biol. 46, 655–661. (10.1093/icb/icl004) PubMed DOI

Kristensen N. 1999. Phylogeny of endopterygote insects, the most successful lineage of living organisms. Eur. J. Entomol. 96, 237–253.

Peters RS, et al. 2014. The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data. BMC Evol. Biol. 14, 52 (10.1186/1471-2148-14-52) PubMed DOI PMC

Heming BS. 2003. Insect development and evolution. Ithaca, NY: Cornell University Press.

Erezyilmaz DF. 2006. Imperfect eggs and oviform nymphs: a history of ideas about the origins of insect metamorphosis. Integr. Comp. Biol. 46, 795–807. (10.1093/icb/icl033) PubMed DOI

Belles X. 2011. Origin and evolution of insect metamorphosis. Chichester, UK: John Wiley & Sons.

Svacha P. 1992. What are and what are not imaginal discs: reevaluation of some basic concepts (Insecta, Holometabola). Dev. Biol. 154, 101–117. (10.1016/0012-1606(92)90052-I) PubMed DOI

Bate M, Arias AM. 1991. The embryonic origin of imaginal discs in Drosophila. Development 112, 755–761. PubMed

Hinton H. 1963. The origin and function of the pupal stage. Proc. R. Ent. Soc. Lond. A 38, 77–85.

Bocak L, Bocakova M, Hunt T, Vogler AP. 2008. Multiple ancient origins of neoteny in Lycidae (Coleoptera): consequences for ecology and macroevolution. Proc. R. Soc. B 275, 2015–2023. (10.1098/rspb.2008.0476) PubMed DOI PMC

Besuchet C. 1956. Biologie, morphologie et systematique des Rhipidius (Col. Rhipiphoridae). Mitt. Schweiz. Entomol. Ges. 29, 73–144.

Truman JW, Riddiford LM. 1999. The origins of insect metamorphosis. Nature 401, 447–452. (10.1038/46737) PubMed DOI

Truman JW, Riddiford LM. 2002. Endocrine insights into the evolution of metamorphosis in insects. Annu. Rev. Entomol. 47, 467–500. (10.1146/annurev.ento.47.091201.145230) PubMed DOI

Truman JW, Riddiford LM. 2019. The evolution of insect metamorphosis: a developmental and endocrine view. Phil. Trans. R. Soc. B 374, 20190070 (10.1098/rstb.2019.0070) PubMed DOI PMC

Rédei D, Štys P. 2016. Larva, nymph and naiad—for accuracy's sake. Syst. Entomol. 41, 505–510. (10.1111/syen.12177) DOI

Wigglesworth V. 1934. The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and ‘metamorphosis’. Quart. J. Micr. Sci. 77, 191–222.

Wigglesworth V. 1954. The physiology of insect metamorphosis. Cambridge, UK: Cambridge University Press.

Jindra M, Palli SR, Riddiford LM. 2013. The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 58, 181–204. (10.1146/annurev-ento-120811-153700) PubMed DOI

Jindra M, Bellés X, Shinoda T. 2015. Molecular basis of juvenile hormone signaling. Curr. Opin. Insect Sci. 11, 39–46. (10.1016/j.cois.2015.08.004) PubMed DOI

Konopova B, Smykal V, Jindra M. 2011. Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PLoS ONE 6, e28728 (10.1371/journal.pone.0028728) PubMed DOI PMC

Smykal V, Daimon T, Kayukawa T, Takaki K, Shinoda T, Jindra M. 2014. Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. Dev. Biol. 390, 221–230. (10.1016/j.ydbio.2014.03.006) PubMed DOI

Ureña E, Manjón C, Franch-Marro X, Martín D. 2014. Transcription factor E93 specifies adult metamorphosis in hemimetabolous and holometabolous insects. Proc. Natl Acad. Sci. USA 111, 7024–7029. (10.1073/pnas.1401478111) PubMed DOI PMC

Bellés X, Santos CG. 2014. The MEKRE93 (Methoprene tolerant-Krüppel homolog 1-E93) pathway in the regulation of insect metamorphosis, and the homology of the pupal stage. Insect Biochem. Mol. Biol . 52C, 60–68. (10.1016/j.ibmb.2014.06.009) PubMed DOI

Ureña E, Chafino S, Manjón C, Franch-Marro X, Martín D. 2016. The occurrence of the holometabolous pupal stage requires the interaction between E93, Krüppel-homolog 1 and Broad-Complex. PLoS Genet. 12, e1006020 (10.1371/journal.pgen.1006020) PubMed DOI PMC

Truman JW, Riddiford LM. 2007. The morphostatic actions of juvenile hormone. Insect Biochem. Mol. Biol. 37, 761–770. (10.1016/j.ibmb.2007.05.011) PubMed DOI

Novák VJ. 1969. Morphogenetic analysis of the effects of juvenile hormone analogues and other morphogenetically active substances on embryos of Schistocerca gregaria (Forskål). J. Embryol. Exp. Morphol. 21, 1–21. PubMed

Erezyilmaz DF, Riddiford LM, Truman JW. 2004. Juvenile hormone acts at embryonic molts and induces the nymphal cuticle in the direct-developing cricket. Dev. Genes Evol. 214, 313–323. (10.1007/s00427-004-0408-2) PubMed DOI

Bergot BJ, Baker FC, Cerf DC, Jamieson G, Schooley DA. 1981. Qualitative and quantitative aspects of juvenile hormone titers in developing embryos of several insect species: discovery of a new JH-like substance extracted from eggs of Manduca sexta. In Juvenile hormone biochemistry (eds Pratt GE, Brooks GT), pp. 33–45. Amsterdam, The Netherlands: Elsevier.

Grossniklaus-Bürgin C, Lanzrein B. 1990. Qualitative and quantitative analyses of juvenile hormone and ecdysteroids from the egg to the pupal molt in Trichoplusia ni. Arch. Insect Biochem. Physiol. 14, 13–30. PubMed

Polivanova EN. 1979. Embryonization of ontogenesis, origin of embryonic moults and types of development in insects. Zool. Zh. 58, 1269–1280.

Konopova B, Zrzavý J. 2005. Ultrastructure, development, and homology of insect embryonic cuticles. J. Morphol. 264, 339–362. (10.1002/jmor.10338) PubMed DOI

Maestro JL, Pascual N, Treiblmayr K, Lozano J, Bellés X. 2010. Juvenile hormone and allatostatins in the German cockroach embryo. Insect Biochem. Mol. Biol. 40, 660–665. (10.1016/j.ibmb.2010.06.006) PubMed DOI

Daimon T, Uchibori M, Nakao H, Sezutsu H, Shinoda T. 2015. Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle. Proc. Natl Acad. Sci. USA 112, E4226–E4235. (10.1073/pnas.1506645112) PubMed DOI PMC

Fernandez-Nicolas A, Bellés X. 2017. Juvenile hormone signaling in short germ-band hemimetabolan embryos. Development 144, 4637–4644. (10.1242/dev.152827) PubMed DOI

Beck Y, Pecasse F, Richards G. 2004. Krüppel-homolog is essential for the coordination of regulatory gene hierarchies in early Drosophila development. Dev. Biol. 268, 64–75. (10.1016/j.ydbio.2003.12.017) PubMed DOI

Minakuchi C, Zhou X, Riddiford LM. 2008. Krüppel homolog 1 (Kr-h1) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster. Mech. Dev. 125, 91–105. (10.1016/j.mod.2007.10.002) PubMed DOI PMC

Minakuchi C, Namiki T, Shinoda T. 2009. Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Dev. Biol. 325, 341–350. (10.1016/j.ydbio.2008.10.016) PubMed DOI

Lozano J, Bellés X. 2011. Conserved repressive function of Krüppel homolog 1 on insect metamorphosis in hemimetabolous and holometabolous species. Sci. Rep. 1, 163 (10.1038/srep00163) PubMed DOI PMC

Charles J-P, Iwema T, Epa VC, Takaki K, Rynes J, Jindra M. 2011. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc. Natl Acad. Sci. USA 108, 21 128–21 133. (10.1073/pnas.1116123109) PubMed DOI PMC

Li M, Mead EA, Zhu J. 2011. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc. Natl Acad. Sci. USA 108, 638–643. (10.1073/pnas.1013914108) PubMed DOI PMC

Kayukawa T, et al. 2012. Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proc. Natl Acad. Sci. USA 109, 11 729–11 734. (10.1073/pnas.1204951109) PubMed DOI PMC

Abdou MA, et al. 2011. Drosophila Met and Gce are partially redundant in transducing juvenile hormone action. Insect Biochem. Mol. Biol. 41, 938–945. (10.1016/j.ibmb.2011.09.003) PubMed DOI

Jindra M, Uhlirova M, Charles J-P, Smykal V, Hill RJ. 2015. Genetic evidence for function of the bHLH-PAS protein Gce/Met as a juvenile hormone receptor. PLoS Genet. 11, e1005394 (10.1371/journal.pgen.1005394) PubMed DOI PMC

Aboulafia-Baginsky N, Pener MP, Staal GB. 1984. Chemical allatectomy of late Locusta embryos by a synthetic precocene and its effect on hopper morphogenesis. J. Insect Physiol. 30, 839–852. (10.1016/0022-1910(84)90057-X) DOI

Brüning E, Saxer A, Lanzrein B. 1985. Methyl farnesoate and juvenile hormone III in normal and precocene treated embryos of the ovoviviparous cockroach, Nauphoeta cinerea. Int. J. Invertebr. Reprod. Dev. 8, 269–278. (10.1080/01688170.1985.10510155) DOI

Brüning E, Lanzrein B. 1987. Function of juvenile hormone III in embryonic development of the cockroach Nauphoeta cinerea. Int. J. Invertebr. Reprod. Dev. 12, 29–44. (10.1080/01688170.1987.10510300) DOI

Treiblmayr K, Pascual N, Piulachs M-D, Keller T, Bellés X. 2006. Juvenile hormone titer versus juvenile hormone synthesis in female nymphs and adults of the German cockroach, Blattella germanica. J. Insect Sci. 6, 1–7. (10.1673/031.006.4301) PubMed DOI PMC

Riddiford L. 1994. Cellular and molecular actions of juvenile hormone. I. General considerations and premetamorphic actions. Adv. Insect Physiol. 24, 213–274. (10.1016/S0065-2806(08)60084-3) DOI

Huang J-H, Lozano J, Bellés X. 2013. Broad-complex functions in postembryonic development of the cockroach Blattella germanica shed new light on the evolution of insect metamorphosis. Biochim. Biophys. Acta 1830, 2178–2187. (10.1016/j.bbagen.2012.09.025) PubMed DOI

Gujar H, Palli SR. 2016. Krüppel homolog 1 and E93 mediate Juvenile hormone regulation of metamorphosis in the common bed bug, Cimex lectularius. Sci. Rep. 6, 26092 (10.1038/srep26092) PubMed DOI PMC

Ishimaru Y, Tomonari S, Watanabe T, Noji S, Mito T.. 2019. Regulatory mechanisms underlying the specification of the pupal-homologous stage in a hemimetabolous insect. Phil. Trans. R. Soc. B 374, 20190225 (10.1098/rstb.2019.0225) PubMed DOI PMC

Konopova B, Jindra M. 2007. Juvenile hormone resistance gene Methoprene-tolerant controls entry into metamorphosis in the beetle Tribolium castaneum. Proc. Natl Acad. Sci. USA 104, 10 488–10 493. (10.1073/pnas.0703719104) PubMed DOI PMC

Nijhout H. 1994. Insect hormones. Princeton, NJ: Princeton University Press.

Kayukawa T, et al. 2014. Hormonal regulation and developmental role of Krüppel homolog 1, a repressor of metamorphosis, in the silkworm Bombyx mori. Dev. Biol. 388, 48–56. (10.1016/j.ydbio.2014.01.022) PubMed DOI

Pecasse F, Beck Y, Ruiz C, Richards G. 2000. Krüppel-homolog, a stage-specific modulator of the prepupal ecdysone response, is essential for Drosophila metamorphosis. Dev. Biol. 221, 53–67. (10.1006/dbio.2000.9687) PubMed DOI

Riddiford LM, Ashburner M. 1991. Effects of juvenile hormone mimics on larval development and metamorphosis of Drosophila melanogaster. Gen. Comp. Endocrinol. 82, 172–183. (10.1016/0016-6480(91)90181-5) PubMed DOI

Zhou X, Riddiford LM. 2002. Broad specifies pupal development and mediates the ‘status quo’ action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Development 129, 2259–2269. PubMed

Bittova L, Jedlicka P, Dracinsky M, Kirubakaran P, Vondrasek J, Hanus R, Jindra M. 2019. Exquisite ligand stereoselectivity of a Drosophila juvenile hormone receptor contrasts with its broad agonist repertoire. J. Biol. Chem. 294, 410–423. (10.1074/jbc.RA118.005992) PubMed DOI PMC

Inui T, Daimon T. 2017. Implantation assays using the integument of early stage Bombyx larvae: insights into the mechanisms underlying the acquisition of competence for metamorphosis. J. Insect Physiol. 100, 35–42. (10.1016/j.jinsphys.2017.05.002) PubMed DOI

Konopova B, Jindra M. 2008. Broad-Complex acts downstream of Met in juvenile hormone signaling to coordinate primitive holometabolan metamorphosis. Development 135, 559–568. (10.1242/dev.016097) PubMed DOI

Suzuki Y, Truman JW, Riddiford LM. 2008. The role of Broad in the development of Tribolium castaneum: implications for the evolution of the holometabolous insect pupa. Development 135, 569–577. (10.1242/dev.015263) PubMed DOI

Parthasarathy R, Tan A, Bai H, Palli SR. 2008. Transcription factor broad suppresses precocious development of adult structures during larval-pupal metamorphosis in the red flour beetle, Tribolium castaneum. Mech. Dev. 125, 299–313. (10.1016/j.mod.2007.11.001) PubMed DOI PMC

Kiss I, Beaton AH, Tardiff J, Fristrom D, Fristrom JW. 1988. Interactions and developmental effects of mutations in the Broad-Complex of Drosophila melanogaster. Genetics 118, 247–259. PubMed PMC

Zhou B, Hiruma K, Shinoda T, Riddiford LM. 1998. Juvenile hormone prevents ecdysteroid-induced expression of broad complex RNAs in the epidermis of the tobacco hornworm, Manduca sexta. Dev. Biol. 203, 233–244. (10.1006/dbio.1998.9059) PubMed DOI

Uhlirova M, Foy BD, Beaty BJ, Olson KE, Riddiford LM, Jindra M. 2003. Use of Sindbis virus-mediated RNA interference to demonstrate a conserved role of Broad-Complex in insect metamorphosis. Proc. Natl Acad. Sci. USA 100, 15 607–15 612. (10.1073/pnas.2136837100) PubMed DOI PMC

Erezyilmaz DF, Riddiford LM, Truman JW. 2006. The pupal specifier broad directs progressive morphogenesis in a direct-developing insect. Proc. Natl Acad. Sci. USA 103, 6925–6930. (10.1073/pnas.0509983103) PubMed DOI PMC

Erezyilmaz DF, Rynerson MR, Truman JW, Riddiford LM. 2010. The role of the pupal determinant broad during embryonic development of a direct-developing insect. Dev. Genes Evol. 219, 535–544. (10.1007/s00427-009-0315-7) PubMed DOI PMC

Piulachs M-D, Pagone V, Bellés X. 2010. Key roles of the Broad-Complex gene in insect embryogenesis. Insect Biochem. Mol. Biol. 40, 468–475. (10.1016/j.ibmb.2010.04.006) PubMed DOI

Baehrecke EH, Thummel CS. 1995. The Drosophila E93 gene from the 93F early puff displays stage- and tissue-specific regulation by 20- hydroxyecdysone. Dev. Biol. 171, 85–97. (10.1006/dbio.1995.1262) PubMed DOI

Chafino S, Ureña E, Casanova J, Casacuberta E, Franch-Marro X, Martín D. 2019. Upregulation of E93 gene expression acts as the trigger for metamorphosis independently of the threshold size in the beetle Tribolium castaneum. Cell Rep. 27, 1039–1049.e2. (10.1016/j.celrep.2019.03.094) PubMed DOI

Belles X. 2019. The innovation of the final moult and the origin of insect metamorphosis. Phil. Trans. R. Soc. B 374, 20180415 (10.1098/rstb.2018.0415) PubMed DOI PMC

Kayukawa T, Nagamine K, Ito Y, Nishita Y, Ishikawa Y, Shinoda T. 2016. Krüppel homolog 1 inhibits insect metamorphosis via direct transcriptional repression of Broad-Complex, a pupal specifier gene. J. Biol. Chem. 291, 1751–1762. (10.1074/jbc.M115.686121) PubMed DOI PMC

Kayukawa T, Jouraku A, Ito Y, Shinoda T. 2017. Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval-adult metamorphosis. Proc. Natl Acad. Sci. USA 114, 1057–1062. (10.1073/pnas.1615423114) PubMed DOI PMC

Ohde T, Takehana Y, Shiotsuki T, Niimi T. 2018. CRISPR/Cas9-based heritable targeted mutagenesis in Thermobia domestica: a genetic tool in an apterygote development model of wing evolution. Arthropod Struct. Dev. 47, 362–369. (10.1016/j.asd.2018.06.003) PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...