Epoxidation of juvenile hormone was a key innovation improving insect reproductive fitness

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34697248

Grantová podpora
K22 AI112585 NIAID NIH HHS - United States
R21 AI153689 NIAID NIH HHS - United States
R21 AI167849 NIAID NIH HHS - United States
U01 CK000510 NCEZID CDC HHS - United States

Methyl farnesoate (MF) plays hormonal regulatory roles in crustaceans. An epoxidated form of MF, known as juvenile hormone (JH), controls metamorphosis and stimulates reproduction in insects. To address the evolutionary significance of MF epoxidation, we generated mosquitoes completely lacking either of the two enzymes that catalyze the last steps of MF/JH biosynthesis and epoxidation, respectively: the JH acid methyltransferase (JHAMT) and the P450 epoxidase CYP15 (EPOX). jhamt-/- larvae lacking both MF and JH died at the onset of metamorphosis. Strikingly, epox-/- mutants, which synthesized MF but no JH, completed the entire life cycle. While epox-/- adults were fertile, the reproductive performance of both sexes was dramatically reduced. Our results suggest that although MF can substitute for the absence of JH in mosquitoes, it is with a significant fitness cost. We propose that MF can fulfill most roles of JH, but its epoxidation to JH was a key innovation providing insects with a reproductive advantage.

Zobrazit více v PubMed

Glenner H., Thomsen P. F., Hebsgaard M. B., Sørensen M. V., Willerslev E., Evolution. The origin of insects. Science 314, 1883–1884 (2006). PubMed

von Reumont B. M., Burmester T., “Remipedia and the evolution of hexapods” inEncyclopedia of Life Sciences (John Wiley & Sons, 2010), pp. 1–6.

Giribet G., Edgecombe G. D., The phylogeny and evolutionary history of arthropods. Curr. Biol. 29, R592–R602 (2019). PubMed

Qu Z., et al. ., How did arthropod sesquiterpenoids and ecdysteroids arise? Comparison of hormonal pathway genes in non-insect arthropod genomes. Genome Biol. Evol. 7, 1951–1959 (2015). PubMed PMC

Rivera-Pérez C., Clifton M. E., Noriega F. G., Jindra M., “Juvenile hormone regulation and action” in Advances in Invertebrate (Neuro)Endocrinology, Saleuddin S., Lange A. B., Orchard I., Eds. (Apple Academic Press, 2020), vol. 2, pp. 1–76.

Tsang S. S. K., et al. ., Diversity of insect sesquiterpenoid regulation. Front. Genet. 11, 1027 (2020). PubMed PMC

Charles J.-P., et al. ., Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc. Natl. Acad. Sci. U.S.A. 108, 21128–21133 (2011). PubMed PMC

Jindra M., Tumova S., Milacek M., Bittova L., A decade with the juvenile hormone receptor. Adv. Insect Physiol. 60, 37–85 (2021).

Jindra M., Uhlirova M., Charles J.-P., Smykal V., Hill R. J., Genetic evidence for function of the bHLH-PAS protein Gce/Met as a juvenile hormone receptor. PLoS Genet. 11, e1005394 (2015). PubMed PMC

Bittova L., et al. ., Exquisite ligand stereoselectivity of a Drosophila juvenile hormone receptor contrasts with its broad agonist repertoire. J. Biol. Chem. 294, 410–423 (2019). PubMed PMC

Miyakawa H., et al. ., A mutation in the receptor Methoprene-tolerant alters juvenile hormone response in insects and crustaceans. Nat. Commun. 4, 1856 (2013). PubMed

Dermauw W., Van Leeuwen T., Feyereisen R., Diversity and evolution of the P450 family in arthropods. Insect Biochem. Mol. Biol. 127, 103490 (2020). PubMed

Goodman W. G., Cusson M., “The juvenile hormones” in Insect Endocrinology, Gilbert L. I., Ed. (Academic Press, 2012), pp. 310–365.

Shinoda T., Itoyama K., Juvenile hormone acid methyltransferase: A key regulatory enzyme for insect metamorphosis. Proc. Natl. Acad. Sci. U.S.A. 100, 11986–11991 (2003). PubMed PMC

Helvig C., Koener J. F., Unnithan G. C., Feyereisen R., CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proc. Natl. Acad. Sci. U.S.A. 101, 4024–4029 (2004). PubMed PMC

Ramirez C. E., Nouzova M., Michalkova V., Fernandez-Lima F., Noriega F. G., Common structural features facilitate the simultaneous identification and quantification of the five most common juvenile hormones by liquid chromatography-tandem mass spectrometry. Insect Biochem. Mol. Biol. 116, 103287 (2020). PubMed PMC

Clements A. N., The Biology of Mosquitoes (Chapman and Hall, 1992).

Kayukawa T., Jouraku A., Ito Y., Shinoda T., Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval-adult metamorphosis. Proc. Natl. Acad. Sci. U.S.A. 114, 1057–1062 (2017). PubMed PMC

Ureña E., Chafino S., Manjón C., Franch-Marro X., Martín D., The occurrence of the holometabolous pupal stage requires the interaction between E93, Krüppel-homolog 1 and Broad-Complex. PLoS Genet. 12, e1006020 (2016). PubMed PMC

Bellés X., Santos C. G., The MEKRE93 (Methoprene tolerant-Krüppel homolog 1-E93) pathway in the regulation of insect metamorphosis, and the homology of the pupal stage. Insect Biochem. Mol. Biol. 52, 60–68 (2014). PubMed

Martín D., Chafino S., Franch-Marro X., How stage identity is established in insects: The role of the metamorphic gene network. Curr. Opin. Insect Sci. 43, 29–38 (2021). PubMed

Truman J. W., The evolution of insect metamorphosis. Curr. Biol. 29, R1252–R1268 (2019). PubMed

Jindra M., Where did the pupa come from? The timing of juvenile hormone signalling supports homology between stages of hemimetabolous and holometabolous insects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190064 (2019). PubMed PMC

Li M., Mead E. A., Zhu J., Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc. Natl. Acad. Sci. U.S.A. 108, 638–643 (2011). PubMed PMC

Kayukawa T., et al. ., Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proc. Natl. Acad. Sci. U.S.A. 109, 11729–11734 (2012). PubMed PMC

Nasci R. S., Relationship of wing length to adult dry weight in several mosquito species (Diptera: Culicidae). J. Med. Entomol. 27, 716–719 (1990). PubMed

Caroci A. S., Li Y., Noriega F. G., Reduced juvenile hormone synthesis in mosquitoes with low teneral reserves reduces ovarian previtellogenic development in Aedes aegypti. J. Exp. Biol. 207, 2685–2690 (2004). PubMed

Wigglesworth V. B., The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and ‘metamorphosis’. Q. J. Microsc. Sci. 77, 191–222 (1934).

Wigglesworth V. B., The function of the corpus allatum in the growth and reproduction of Rhodnius prolixus (Hemiptera). Q. J. Microsc. Sci. 79, 91–121 (1936).

Riddiford L. M., Rhodnius, golden oil, and Met: A history of juvenile hormone research. Front. Cell Dev. Biol. 8, 679 (2020). PubMed PMC

Bellés X., Insect Metamorphosis: From Natural History to Regulation of Development and Evolution (Elsevier, 2020).

Bergot B. J., Baker F. C., Cerf D. C., Jamieson G., Schooley D. A., “Qualitative and quantitative aspects of juvenile hormone titers in developing embryos of several insect species: Discovery of a new JH-like substance extracted from eggs of Manduca sexta” in Juvenile Hormone Biochemistry, Pratt G. E., Brooks G. T., Eds. (Elsevier, 1981), pp. 33–45.

Maestro J. L., Pascual N., Treiblmayr K., Lozano J., Bellés X., Juvenile hormone and allatostatins in the German cockroach embryo. Insect Biochem. Mol. Biol. 40, 660–665 (2010). PubMed

Daimon T., Uchibori M., Nakao H., Sezutsu H., Shinoda T., Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle. Proc. Natl. Acad. Sci. U.S.A. 112, E4226–E4235 (2015). PubMed PMC

Fernandez-Nicolas A., Bellés X., Juvenile hormone signaling in short germ-band hemimetabolan embryos. Development 144, 4637–4644 (2017). PubMed

Zhu G.-H., Jiao Y., Chereddy S. C. R. R., Noh M. Y., Palli S. R., Knockout of juvenile hormone receptor, Methoprene-tolerant, induces black larval phenotype in the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. U.S.A. 116, 21501–21507 (2019). PubMed PMC

Jindra M., Palli S. R., Riddiford L. M., The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 58, 181–204 (2013). PubMed

Feyereisen R., Jindra M., The silkworm coming of age—Early. PLoS Genet. 8, e1002591 (2012). PubMed PMC

Smykal V., et al. ., Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. Dev. Biol. 390, 221–230 (2014). PubMed

Daimon T., et al. ., Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori. PLoS Genet. 8, e1002486 (2012). PubMed PMC

Minakuchi C., Namiki T., Shinoda T., Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Dev. Biol. 325, 341–350 (2009). PubMed

Cui Y., Sui Y., Xu J., Zhu F., Palli S. R., Juvenile hormone regulates Aedes aegypti Krüppel homolog 1 through a conserved E box motif. Insect Biochem. Mol. Biol. 52, 23–32 (2014). PubMed PMC

Riddiford L. M., Truman J. W., Mirth C. K., Shen Y. C., A role for juvenile hormone in the prepupal development of Drosophila melanogaster. Development 137, 1117–1126 (2010). PubMed PMC

Abdou M. A., et al. ., Drosophila Met and Gce are partially redundant in transducing juvenile hormone action. Insect Biochem. Mol. Biol. 41, 938–945 (2011). PubMed

Zhu J., Noriega F. G., The role of juvenile hormone in mosquito development and reproduction. Adv. Insect Physiol. 51, 93–113 (2016).

Roy S., et al. ., Regulation of reproductive processes in female mosquitoes. Adv. Insect Physiol. 51, 115–144 (2016).

Roy S., Saha T. T., Zou Z., Raikhel A. S., Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 63, 489–511 (2018). PubMed

Clifton M. E., Noriega F. G., Nutrient limitation results in juvenile hormone-mediated resorption of previtellogenic ovarian follicles in mosquitoes. J. Insect Physiol. 57, 1274–1281 (2011). PubMed PMC

Clifton M. E., Noriega F. G., The fate of follicles after a blood meal is dependent on previtellogenic nutrition and juvenile hormone in Aedes aegypti. J. Insect Physiol. 58, 1007–1019 (2012). PubMed PMC

Gwadz R. W., Spielman A., Corpus allatum control of ovarian development in Aedes aegypti. J. Insect Physiol. 19, 1441–1448 (1973). PubMed

Hernández-Martínez S., Mayoral J. G., Li Y., Noriega F. G., Role of juvenile hormone and allatotropin on nutrient allocation, ovarian development and survivorship in mosquitoes. J. Insect Physiol. 53, 230–234 (2007). PubMed PMC

Ahmed T. H., Saunders T. R., Mullins D., Rahman M. Z., Zhu J., Molecular action of pyriproxyfen: Role of the Methoprene-tolerant protein in the pyriproxyfen-induced sterilization of adult female mosquitoes. PLoS Negl. Trop. Dis. 14, e0008669 (2020). PubMed PMC

Grisales N., et al. ., Pyriproxyfen-treated bed nets reduce reproductive fitness and longevity of pyrethroid-resistant Anopheles gambiae under laboratory and field conditions. Malar. J. 20, 273 (2021). PubMed PMC

League G. P., et al. ., Sexual selection theory meets disease vector control: Testing harmonic convergence as a “good genes” signal in Aedes aegypti mosquitoes. PLoS Negl. Trop. Dis. 15, e0009540 (2021). PubMed PMC

Ramalingam S., Craig G. B., The effects of a JH mimic and cauterization of the corpus allatum complex on the male accessory glands of Aedes aegypti (Diptera: Culicidae). Can. Entomol. 109, 897–906 (1977).

Minakuchi C., et al. ., Expressional and functional analysis of CYP15A1, a juvenile hormone epoxidase, in the red flour beetle Tribolium castaneum. J. Insect Physiol. 80, 61–70 (2015). PubMed

Yokoi T., et al. ., Transcription-inducing activity of natural and synthetic juvenile hormone agonists through the Drosophila Methoprene-tolerant protein. Pest Manag. Sci. 76, 2316–2323 (2020). PubMed

Miyakawa H., Iguchi T., Comparative luciferase assay for establishing reliable in vitro screening system of juvenile hormone agonists. J. Appl. Toxicol. 37, 1082–1090 (2017). PubMed

Tobe S. S., Bendena W. G., The regulation of juvenile hormone production in arthropods. Functional and evolutionary perspectives. Ann. N. Y. Acad. Sci. 897, 300–310 (1999). PubMed

Rodrigues M. A., Flatt T., Endocrine uncoupling of the trade-off between reproduction and somatic maintenance in eusocial insects. Curr. Opin. Insect Sci. 16, 1–8 (2016). PubMed

Kistler K. E., Vosshall L. B., Matthews B. J., Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep. 11, 51–60 (2015). PubMed PMC

Raji J. I., et al. ., Aedes aegypti mosquitoes detect acidic volatiles found in human odor using the IR8a pathway. Curr. Biol. 29, 1253–1262.e7 (2019). PubMed PMC

Lobo N. F., Clayton J. R., Fraser M. J., Kafatos F. C., Collins F. H., High efficiency germ-line transformation of mosquitoes. Nat. Protoc. 1, 1312–1317 (2006). PubMed

Nouzova M., Edwards M. J., Mayoral J. G., Noriega F. G., A coordinated expression of biosynthetic enzymes controls the flux of juvenile hormone precursors in the corpora allata of mosquitoes. Insect Biochem. Mol. Biol. 41, 660–669 (2011). PubMed PMC

Hernández S., et al. ., Morphological and cytochemical characterization of female Anopheles albimanus (Diptera: Culicidae) hemocytes. J. Med. Entomol. 36, 426–434 (1999). PubMed

Ramirez C. E., et al. ., Fast, ultra-trace detection of juvenile hormone III from mosquitoes using mass spectrometry. Talanta 159, 371–378 (2016). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...