Ovarian transcriptome analyses indicate that weak juvenile hormone signaling underlies the molecular basis of oogenesis deficiencies in mosquitoes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R21 AI167849
NIAID NIH HHS - United States
22-21244S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000759
Centre for Research of Pathogenicity and Virulence of Parasite
R21AI167849
National Institutes of Health-NIAID
PubMed
40484957
PubMed Central
PMC12147312
DOI
10.1186/s12915-025-02266-z
PII: 10.1186/s12915-025-02266-z
Knihovny.cz E-zdroje
- Klíčová slova
- Aedes aegypti, Ecdysteroids, Juvenile hormone, Ovaries, Transcriptome, lncRNA,
- MeSH
- Aedes * genetika fyziologie MeSH
- juvenilní hormony * metabolismus MeSH
- oogeneze * genetika MeSH
- ovarium * metabolismus MeSH
- signální transdukce * genetika MeSH
- stanovení celkové genové exprese MeSH
- transkriptom * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- juvenilní hormony * MeSH
BACKGROUND: Juvenile hormone (JH) is synthesized by the corpora allata (CA) and controls development and reproduction in insects. We recently used CRISPR/Cas9 to establish a line lacking the enzyme that catalyzes the final step of JH biosynthesis in mosquitoes, a P450 epoxidase. The CA of the epox-/- mutants do not synthesize epoxidized JH III but methyl farneosate (MF), a weak agonist of the JH receptor. Female epox-/- mosquitoes have reduced JH signaling and show a substantial loss of reproductive fitness. To understand the molecular basis of this loss of fitness, we constructed ovarian mRNA libraries of Ae. aegypti of the Orlando strain wild-type (WT) and epoxidase null mutants (epox-/-) and investigated differential expression of reproductive genes. RESULTS: We performed triplicate RNA-seq analyses of female WT and epox-/- ovaries dissected at four critical stages of oogenesis: Ovaries from newly eclosed females (0h), sugar-fed females at 4 days post-eclosion (4d SF), females 16h (16h BF), and 48 h after a blood meal (48h BF). Silencing of epoxidase resulted in a drastic change in the expression of thousands of genes. CONCLUSIONS: Our results suggest that epoxidase deficiency leads to a reduction in JH signaling that has significant effects on Ae. aegypti ovarian transcriptome profiles. Ecdysteroid titers are dysregulated in the mutants, leading to a significant delay in the expression of vitelline membrane genes and other transcripts. We discovered changes in the expression of 230 long non-coding RNAs (lncRNAs) that may play an important role in the regulation of ovarian genes.
Zobrazit více v PubMed
Chala B, Hamde F. Emerging and re-emerging vector-borne infectious diseases and the challenges for control: a review. Front Public Health. 2021;9:715759. PubMed PMC
Barillas-Mury C, Ribeiro JMC, Valenzuela JG. Understanding pathogen survival and transmission by arthropod vectors to prevent human disease. Science. 2022;377:eabc2757. PubMed
Zhu J, Noriega FG. Chapter four - the role of juvenile hormone in mosquito development and reproduction. In: Raikhel AS, editor. Advances in insect physiology. Academic Press; 2016. p. 93–113.
Clements AN. The biology of mosquitoes. Volume 1. Development, nutrition and reproduction. London: Chapman & Hall, 1992. viii + 509 pp. Hard cover £50. ISBN 0–412–40180–0. Bull Entomol Res. 1993;83:307–8.
Klowden MJ. Endocrine aspects of mosquito reproduction. Arch Insect Biochem Physiol. 1997;35:491–512.
Hagedorn HH, Turner S, Hagedorn EA, Pontecorvo D, Greenbaum P, Pfeiffer D, et al. Postemergence growth of the ovarian follicles of Aedes aegypti. J Insect Physiol. 1977;23:203–6. PubMed
Rivera-Pérez C, Clifton ME, Noriega FG, Jindra M. Juvenile hormone regulation and action. In: Advances in invertebrate (neuro)endocrinology. Apple Academic Press; 2020.
Nouzova M, Edwards MJ, Michalkova V, Ramirez CE, Ruiz M, Areiza M, et al. Epoxidation of juvenile hormone was a key innovation improving insect reproductive fitness. Proc Natl Acad Sci. 2021;118:e2109381118. PubMed PMC
Jindra M, Uhlirova M, Charles J-P, Smykal V, Hill RJ. Genetic evidence for function of the bHLH-PAS protein gce/met as a juvenile hormone receptor. PLoS Genet. 2015;11:e1005394. PubMed PMC
Bittova L, Jedlicka P, Dracinsky M, Kirubakaran P, Vondrasek J, Hanus R, et al. Exquisite ligand stereoselectivity of a Drosophila juvenile hormone receptor contrasts with its broad agonist repertoire. J Biol Chem. 2019;294:410–23. PubMed PMC
Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet. 2006;22:1–5. PubMed
Clifton ME, Noriega FG. The fate of follicles after a blood meal is dependent on previtellogenic nutrition and juvenile hormone in Aedes aegypti. J Insect Physiol. 2012;58:1007–19. PubMed PMC
Wiśniewska MM, Kolísko M, Berková P, Moss M, Maaroufi HO, Noriega FG, Nouzova M. Ovarian transcriptomes analysis examines the molecular bases of oogenesis deficiencies caused by weak juvenile hormone signaling. Figshare. 2024. 10.6084/m9.figshare.26780326. PubMed PMC
Wen Y, Wu Y, Xu B, Lin J, Zhu H. Fasim-longtarget enables fast and accurate genome-wide lncRNA/DNA binding prediction. Comput Struct Biotechnol J. 2022;20:3347–50. PubMed PMC
Liu Y, Tian B. Protein–DNA binding sites prediction based on pre-trained protein language model and contrastive learning. Brief Bioinformatics. 2024;25:bbad488. PubMed PMC
Kim GB, Gao Y, Palsson BO, Lee SY. DeepTFactor: a deep learning-based tool for the prediction of transcription factors. Proc Natl Acad Sci. 2021;118:e2021171118. PubMed PMC
Patiyal S, Tiwari P, Ghai M, Dhapola A, Dhall A, Raghava GPS. A hybrid approach for predicting transcription factors. Frontiers in Bioinformatics. 2024;4:1425419. PubMed PMC
Valzania L, Mattee MT, Strand MR, Brown MR. Blood feeding activates the vitellogenic stage of oogenesis in the mosquito Aedes aegypti through inhibition of glycogen synthase kinase 3 by the insulin and TOR pathways. Dev Biol. 2019;454:85–95. PubMed PMC
Isoe J, Riehle MA, Miesfeld RL. Mosquito egg development and eggshell formation. Cold Spring Harb Protoc. 2023. 10.1101/pdb.top107669. PubMed
Akbari OS, Antoshechkin I, Amrhein H, Williams B, Diloreto R, Sandler J, et al. The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector. G3 Genes|Genomes|Genetics. 2013;3:1493–509. PubMed PMC
Lin Y, Hamblin MT, Edwards MJ, Barillas-Mury C, Kanost MR, Knipple DC, et al. Structure, expression, and hormonal control of genes from the mosquito, Aedes aegypti, which encode proteins similar to the vitelline membrane proteins of Drosophila melanogaster. Dev Biol. 1993;155:558–68. PubMed
Liu S, Li K, Gao Y, Liu X, Chen W, Ge W, et al. Antagonistic actions of juvenile hormone and 20-hydroxyecdysone within the ring gland determine developmental transitions in Drosophila. Proc Natl Acad Sci. 2018;115:139–44. PubMed PMC
Zhang T, Song W, Li Z, Qian W, Wei L, Yang Y, et al. Krüppel homolog 1 represses insect ecdysone biosynthesis by directly inhibiting the transcription of steroidogenic enzymes. Proc Natl Acad Sci. 2018;115:3960–5. PubMed PMC
Li K, Tian Y, Yuan Y, Fan X, Yang M, He Z, et al. Insights into the functions of lncRNAs in Drosophila. Int J Mol Sci. 2019;20:4646. PubMed PMC
Belavilas-Trovas A, Gregoriou M-E, Tastsoglou S, Soukia O, Giakountis A, Mathiopoulos K. A species-specific lncRNA modulates the reproductive ability of the Asian tiger mosquito. Frontiers in Bioengineering and Biotechnology. 2022;10:885767. PubMed PMC
Jindra M, Tumova S, Milacek M, Bittova L. Chapter two - a decade with the juvenile hormone receptor. In: Adams ME, editor. Advances in insect physiology. Academic Press; 2021. p. 37–85.
He Q, Zhang Y. Kr-h1, a cornerstone gene in insect life history. Front Physiol. 2022;13:905441. PubMed PMC
Andrews S. FASTQC. A quality control tool for high throughput sequence data. 2010.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. PubMed PMC
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. PubMed PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30. PubMed
Ge SX, Son EW, Yao RN. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics. 2018;19:24. PubMed PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:38. PubMed PMC
Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–9. PubMed PMC
Furge K, Dykema K. PGSEA: parametric gene set enrichment analysis. R package version 1.60.0. 2019.
Kang Y-J, Yang D-C, Kong L, Hou M, Meng Y-Q, Wei L, Gao G. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017;45:W12–6. PubMed PMC
Li M, Liang C. LncDC: a machine learning-based tool for long non-coding RNA detection from RNA-Seq data. Scientific Repports. 2022;12:19083. PubMed PMC
Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res. 2015;43:W39-49. PubMed PMC
Marešová L, Moos M, Opekar S, Kazek M, Eichler C, Šimek P. A validated HPLC-MS/MS method for the simultaneous determination of ecdysteroid hormones in subminimal amounts of biological material. J Lipid Res. 2024;65(10):100640. PubMed PMC
Wiśniewska MM, Kolisko M, Berková P, Moss M, Maaroufi HO, Noriega FG, Nouzova M. Ovarian transcriptomes analysis examines the molecular bases of oogenesis deficiencies caused by weak juvenile hormone signaling. GenBank. 2024. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1128542. PubMed PMC