Crosstalk between Nutrition, Insulin, Juvenile Hormone, and Ecdysteroid Signaling in the Classical Insect Model, Rhodnius prolixus
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RGPIN-2019-05775 (ABL) and RGPIN-2017-06402 (IO)
Natural Sciences and Engineering Research Council
PubMed
36613451
PubMed Central
PMC9819625
DOI
10.3390/ijms24010007
PII: ijms24010007
Knihovny.cz E-zdroje
- Klíčová slova
- corpus allatum, endocrine signaling, hormone titers, insect, ovary,
- MeSH
- ekdysteroidy metabolismus MeSH
- hmyzí hormony * metabolismus MeSH
- inzulin lidský MeSH
- inzulin metabolismus MeSH
- juvenilní hormony metabolismus MeSH
- Rhodnius * metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ekdysteroidy MeSH
- hmyzí hormony * MeSH
- inzulin lidský MeSH
- inzulin MeSH
- juvenilní hormony MeSH
The rigorous balance of endocrine signals that control insect reproductive physiology is crucial for the success of egg production. Rhodnius prolixus, a blood-feeding insect and main vector of Chagas disease, has been used over the last century as a model to unravel aspects of insect metabolism and physiology. Our recent work has shown that nutrition, insulin signaling, and two main types of insect lipophilic hormones, juvenile hormone (JH) and ecdysteroids, are essential for successful reproduction in R. prolixus; however, the interplay behind these endocrine signals has not been established. We used a combination of hormone treatments, gene expression analyses, hormone measurements, and ex vivo experiments using the corpus allatum or the ovary, to investigate how the interaction of these endocrine signals might define the hormone environment for egg production. The results show that after a blood meal, circulating JH levels increase, a process mainly driven through insulin and allatoregulatory neuropeptides. In turn, JH feeds back to provide some control over its own biosynthesis by regulating the expression of critical biosynthetic enzymes in the corpus allatum. Interestingly, insulin also stimulates the synthesis and release of ecdysteroids from the ovary. This study highlights the complex network of endocrine signals that, together, coordinate a successful reproductive cycle.
Department of Biology University of Toronto Mississauga Mississauga ON L5L 1C6 Canada
Department of Parasitology University of South Bohemia 37005 České Budějovice Czech Republic
Zobrazit více v PubMed
Nur Aliah N.A., Ab-Rahim S., Moore H.E., Heo C.C. Juvenile hormone: Production, regulation, current application in vector control and its future applications. Trop Biomed. 2021;38:254–264. PubMed
Roy S., Saha T.T., Zou Z., Raikhel A.S. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 2018;63:489–511. doi: 10.1146/annurev-ento-020117-043258. PubMed DOI
Wu Z., Yang L., He Q., Zhou S. Regulatory mechanisms of vitellogenesis in Insects. Front. Cell Dev. Biol. 2021;8:593613. doi: 10.3389/fcell.2020.593613. PubMed DOI PMC
Smykal V., Raikhel A.S. Nutritional control of insect reproduction. Curr. Opin. Insect Sci. 2015;11:31–38. doi: 10.1016/j.cois.2015.08.003. PubMed DOI PMC
Khalid M.Z., Ahmad S., Ngegba P.M., Zhong G. Role of Endocrine System in the Regulation of Female Insect Reproduction. Biology. 2021;10:614. doi: 10.3390/biology10070614. PubMed DOI PMC
Das D., Arur S. Conserved insulin signaling in the regulation of oocyte growth, development, and maturation. Mol. Reprod. Dev. 2017;84:444–459. doi: 10.1002/mrd.22806. PubMed DOI PMC
Vitali V., Horn F., Catania F. Insulin-like signaling within and beyond metazoans. Biol. Chem. 2018;399:851–857. doi: 10.1515/hsz-2018-0135. PubMed DOI
Veenstra J.A., Leyria J., Orchard I., Lange A.B. Identification of Gonadulin and Insulin-Like Growth Factor from Migratory Locusts and Their Importance in Reproduction in Locusta migratoria. Front. Endocrinol. 2021;12:693068. doi: 10.3389/fendo.2021.693068. PubMed DOI PMC
Nässel D.R., Vanden Broeck J. Insulin/IGF signaling in Drosophila and other insects: Factors that regulate production, release and post-release action of the insulin-like peptides. Cell Mol. Life Sci. 2016;73:271–290. doi: 10.1007/s00018-015-2063-3. PubMed DOI PMC
Mizoguchi A., Okamoto N. Insulin-Like and IGF-like Peptides in the Silkmoth Bombyx Mori: Discovery, Structure, Secretion, and Function. Front. Physiol. 2013;4:217. doi: 10.3389/fphys.2013.00217. PubMed DOI PMC
Ons S., Sterkel M., Diambra L., Urlaub H., Rivera-Pomar R. Neuropeptide precursor gene discovery in the Chagas disease vector Rhodnius prolixus. Insect Mol. Biol. 2011;20:29–44. doi: 10.1111/j.1365-2583.2010.01050.x. PubMed DOI
Defferrari M.S., Orchard I., Lange A.B. An insulin-like growth factor in Rhodnius prolixus is involved in post-feeding nutrient balance and growth. Front. Neurosci. 2016;10:566. doi: 10.3389/fnins.2016.00566. PubMed DOI PMC
Veenstra J.A. Arthropod IGF, relaxin and gonadulin, putative orthologs of Drosophila insulin-like peptides 6, 7 and 8, likely originated from an ancient gene triplication. PeerJ. 2020;8:e9534. doi: 10.7717/peerj.9534. PubMed DOI PMC
Badisco L., Van Wielendaele P., Vanden Broeck J. Eat to reproduce: A key role for the insulin signaling pathway in adult insects. Front. Physiol. 2013;4:202. doi: 10.3389/fphys.2013.00202. PubMed DOI PMC
Sharma A., Nuss A.B., Gulia-Nuss M. Insulin-Like Peptide Signaling in Mosquitoes: The Road Behind and the Road Ahead. Front. Endocrinol. 2019;10:166. doi: 10.3389/fendo.2019.00166. PubMed DOI PMC
Leyria J., Orchard I., Lange A.B. Transcriptomic analysis of regulatory pathways involved in female reproductive physiology of Rhodnius prolixus under different nutritional states. Sci. Rep. 2020;10:11431. doi: 10.1038/s41598-020-67932-4. PubMed DOI PMC
Leyria J., Orchard I., Lange A.B. The involvement of insulin/ToR signaling pathway in reproductive performance of Rhodnius prolixus. Insect Biochem. Mol. Biol. 2021;130:103526. doi: 10.1016/j.ibmb.2021.103526. PubMed DOI
Liao S., Nässel D.R. Drosophila Insulin-Like Peptide 8 (DILP8) in Ovarian Follicle Cells Regulates Ovulation and Metabolism. Front. Endocrinol. 2020;11:461. doi: 10.3389/fendo.2020.00461. PubMed DOI PMC
Leyria J., Philip R., Orchard I., Lange A.B. Gonadulin: A newly discovered insulin-like peptide involved in ovulation and oviposition in Rhodnius prolixus, a vector of Chagas disease. Insect Biochem. Mol. Biol. 2022;150:103848. doi: 10.1016/j.ibmb.2022.103848. PubMed DOI
Riehle M.A., Brown M.R. Insulin stimulates ecdysteroid production through a conserved signaling cascade in the mosquito Aedes aegypti. Insect Biochem. Mol. Biol. 1999;29:855–860. doi: 10.1016/S0965-1748(99)00084-3. PubMed DOI
Tatar M., Kopelman A., Epstein D., Tu M.P., Yin C.M., Garofalo R.S. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001;292:107–110. doi: 10.1126/science.1057987. PubMed DOI
Terashima J., Bownes M. Translating available food into the number of eggs laid by Drosophila melanogaster. Genetics. 2004;167:1711–1719. doi: 10.1534/genetics.103.024323. PubMed DOI PMC
Roy S.G., Hansen I.A., Raikhel A.S. Effect of insulin and 20-hydroxyecdysone in the fat body of the yellow fever mosquito Aedes aegypti. Insect Biochem. Mol. Biol. 2007;37:1317–1326. doi: 10.1016/j.ibmb.2007.08.004. PubMed DOI PMC
Maestro J.L., Cobo J., Belles X. Target of rapamycin (TOR) mediates the transduction of nutritional signals into juvenile hormone production. J. Biol. Chem. 2009;284:5506–5513. doi: 10.1074/jbc.M807042200. PubMed DOI
Perez-Hedo M., Rivera-Perez C., Noriega F.G. The insulin/TOR signal transduction pathway is involved in the nutritional regulation of juvenile hormone synthesis in Aedes aegypti. Insect Biochem. Mol. Biol. 2013;43:495–500. doi: 10.1016/j.ibmb.2013.03.008. PubMed DOI PMC
Abrisqueta M., Süren-Castillo S., Maestro J.L. Insulin receptor-mediated nutritional signalling regulates juvenile hormone biosynthesis and vitellogenin production in the German cockroach. Insect Biochem. Mol. Biol. 2014;49:14–23. doi: 10.1016/j.ibmb.2014.03.005. PubMed DOI
De Loof A., Boerjan B., Ernst U.R., Schoofs L. The mode of action of juvenile hormone and ecdysone: Towards an epi-endocrinological paradigm? Gen. Comp. Endocrinol. 2013;188:35–45. doi: 10.1016/j.ygcen.2013.02.004. PubMed DOI
Rewitz K.F., Rybczynski R., Warren J.T., Gilbert L.I. The Halloween Genes Code for Cytochrome P450 Enzymes Mediating Synthesis of the Insect Moulting Hormone. Biochem. Soc. Trans. 2006;34:1256–1260. doi: 10.1042/BST0341256. PubMed DOI
Bellés X., Cassier P., Cerdá X., Pascual N., André M., Rósso Y., Piulachs M.D. Induction of choriogenesis by 20-hydroxyecdysone in the german cockroach. Tissue Cell. 1993;25:195–204. doi: 10.1016/0040-8166(93)90019-H. PubMed DOI
Hackney J.F., Pucci C., Naes E., Dobens L. Ras signaling modulates activity of the ecdysone receptor EcR during cell migration in the Drosophila ovary. Dev. Dyn. 2007;236:1213–1226. doi: 10.1002/dvdy.21140. PubMed DOI
Bernardi F., Romani P., Tzertzinis G., Gargiulo G., Cavaliere V. EcR-B1 and Usp nuclear hormone receptors regulate expression of the VM32E eggshell gene during Drosophila oogenesis. Dev. Biol. 2009;328:541–551. doi: 10.1016/j.ydbio.2009.01.013. PubMed DOI
Parthasarathy R., Sheng Z., Sun Z., Palli S.R. Ecdysteroid regulation of ovarian growth and oocyte maturation in the red flour beetle, Tribolium castaneum. Insect Biochem. Mol. Biol. 2010;40:429–439. doi: 10.1016/j.ibmb.2010.04.002. PubMed DOI PMC
Belles X., Piulachs M.-D. Ecdysone signalling and ovarian development in insects: From stem cells to ovarian follicle formation. Biochim. Biophys. Acta Gene Regul. Mech. 2015;1849:181–186. doi: 10.1016/j.bbagrm.2014.05.025. PubMed DOI
Lenaerts C., Marchal E., Peeters P., Vanden Broeck J. The ecdysone receptor complex is essential for the reproductive success in the female desert locust, Schistocerca gregaria. Sci. Rep. 2019;9:15. doi: 10.1038/s41598-018-36763-9. PubMed DOI PMC
Swevers L. An update on ecdysone signaling during insect oogenesis. Curr. Opin. Insect Sci. 2019;31:8–13. doi: 10.1016/j.cois.2018.07.003. PubMed DOI
Zhou X., Ye Y.Z., Ogihara M.H., Takeshima M., Fujinaga D., Liu C.W., Zhu Z., Kataoka H., Bao Y.Y. Functional analysis of ecdysteroid biosynthetic enzymes of the rice planthopper, Nilaparvata lugens. Insect Biochem. Mol. Biol. 2020;123:103428. doi: 10.1016/j.ibmb.2020.103428. PubMed DOI
Zhu Z., Tong C., Qiu B., Yang H., Xu J., Zheng S., Song Q., Feng Q., Deng H. 20E-mediated regulation of BmKr-h1 by BmKRP promotes oocyte maturation. BMC Biol. 2021;2021 19:39. doi: 10.1186/s12915-021-00952-2. PubMed DOI PMC
De Loof A., Briers T., Huybrechts R. Presence and function of ecdysteroids in adult insects. Comp. Biochem. Physiol. B Comp. Biochem. 1984;79:505–509. doi: 10.1016/0305-0491(84)90356-0. DOI
Bownes M. The roles of juvenile hormone, ecdysone and the ovary in the control of Drosophila vitellogenesis. J. Insect Physiol. 1989;35:409–413. doi: 10.1016/0022-1910(89)90115-7. DOI
Peng L., Wang L., Zou M.M., Vasseur L., Chu L.N., Qin Y.D., Zhai Y.L., You M.S. Identification of Halloween Genes and RNA Interference-Mediated Functional Characterization of a Halloween Gene shadow in Plutella xylostella. Front. Physiol. 2019;10:1120. doi: 10.3389/fphys.2019.01120. PubMed DOI PMC
Davey K. The interaction of feeding and mating in the hormonal control of egg production in Rhodnius prolixus. J. Insect Physiol. 2007;53:208–215. doi: 10.1016/j.jinsphys.2006.10.002. PubMed DOI
Hult E.F., Huang J., Marchal E., Lam J., Tobe S.S. RXR/USP and EcR are critical for the regulation of reproduction and the control of JH biosynthesis in Diploptera punctata. J. Insect Physiol. 2015;80:48–60. doi: 10.1016/j.jinsphys.2015.04.006. PubMed DOI
Noriega F.G. Juvenile Hormone Biosynthesis in Insects: What Is New, What Do We Know, and What Questions Remain? Int. Sch. Res. Notices. 2014;2014:967361. doi: 10.1155/2014/967361. PubMed DOI PMC
Tsang S.S.K., Law S.T.S., Li C., Qu Z., Bendena W.G., Tobe S.S., Hui J.H.L. Diversity of Insect Sesquiterpenoid Regulation. Front. Genet. 2020;11:1027. doi: 10.3389/fgene.2020.01027. PubMed DOI PMC
Verlinden H., Gijbels M., Lismont E., Lenaerts C., Vanden Broeck J., Marchal E. The pleiotropic allatoregulatory neuropeptides and their receptors: A mini-review. J. Insect Physiol. 2015;80:2–14. doi: 10.1016/j.jinsphys.2015.04.004. PubMed DOI
Luo W., Liu S., Zhang W., Yang L., Huang J., Zhou S., Feng Q., Palli S.R., Wang J., Roth S., et al. Juvenile hormone signaling promotes ovulation and maintains egg shape by inducing expression of extracellular matrix genes. Proc. Natl. Acad. Sci. USA. 2021;118:e2104461118. doi: 10.1073/pnas.2104461118. PubMed DOI PMC
Lange A.B., Leyria J., Orchard I. The hormonal and neural control of egg production in the historically important model insect, Rhodnius prolixus: A review, with new insights in this post-genomic era. Gen. Comp. Endocrinol. 2022;321–322:114030. doi: 10.1016/j.ygcen.2022.114030. PubMed DOI
Wigglesworth V.B. Factors Controlling Moulting and ‘Metamorphosis’ in an Insect. Nature. 1934;133:725–726. doi: 10.1038/133725b0. DOI
Avaria A., Ventura-Garcia L., Sanmartino M., Van der Laat C. Population movements, borders, and Chagas disease. Mem. Inst. Oswaldo Cruz. 2022;117:e210151. doi: 10.1590/0074-02760210151. PubMed DOI PMC
Villalobos-Sambucaro M.J., Nouzova M., Ramirez C.E., Alzugaray M.E., Fernandez-Lima F., Ronderos J.R., Noriega F.G. The juvenile hormone described in Rhodnius prolixus by Wigglesworth is juvenile hormone III skipped bisepoxide. Sci. Rep. 2020;10:3091. doi: 10.1038/s41598-020-59495-1. PubMed DOI PMC
Leyria J., Orchard I., Lange A.B. Impact of JH signaling on reproductive physiology of the classical insect model, Rhodnius prolixus. J. Int. Mol. Sci. 2022;23:13832. doi: 10.3390/ijms232213832. PubMed DOI PMC
Benrabaa S., Orchard I., Lange A.B. The role of ecdysteroid in the regulation of ovarian growth and oocyte maturation in Rhodnius prolixus, a vector of Chagas disease. J. Exp. Biol. 2022;225:jeb244830. doi: 10.1242/jeb.244830. PubMed DOI
Noriega F.G., Nouzova M. Approaches and Tools to Study the Roles of Juvenile Hormones in Controlling Insect Biology. Insects. 2020;11:858. doi: 10.3390/insects11120858. PubMed DOI PMC
Wang Z., Davey K. The role of juvenile hormone in vitellogenin production in Rhodnius prolixus. J. Insect Physiol. 1993;39:471–476. doi: 10.1016/0022-1910(93)90078-6. DOI
Ramos F.O., Leyria J., Nouzova M., Fruttero L.L., Noriega F.G., Canavoso L.E. Juvenile hormone mediates lipid storage in the oocytes of Dipetalogaster maxima. Insect Biochem. Mol. Biol. 2021;133:103499. doi: 10.1016/j.ibmb.2020.103499. PubMed DOI
Matsumoto K., Kotaki T., Numata H., Shinada T., Goto S.G. Juvenile hormone III skipped bisepoxide is widespread in true bugs (Hemiptera: Heteroptera) R Soc. Open Sci. 2021;8:202242. doi: 10.1098/rsos.202242. PubMed DOI PMC
Nouzova M., Edwards M.J., Michalkova V., Ramirez C.E., Ruiz M., Areiza M., DeGennaro M., Fernandez-Lima F., Feyereisen R., Jindra M., et al. Epoxidation of juvenile hormone was a key innovation improving insect reproductive fitness. Proc. Natl. Acad. Sci. USA. 2021;118:e2109381118. doi: 10.1073/pnas.2109381118. PubMed DOI PMC
Noriega F.G. Autogeny in three species of Triatominae: Rhodnius prolixus, Triatoma rubrovaria, and Triatoma infestans (Hemiptera: Reduviidae) J. Med. Entomol. 1992;29:273–277. doi: 10.1093/jmedent/29.2.273. PubMed DOI
Lenaerts C., Monjon E., Van Lommel J., Verbakel L., Vanden Broeck J. Peptides in insect oogenesis. Curr. Opin. Insect Sci. 2019;31:58–64. doi: 10.1016/j.cois.2018.08.007. PubMed DOI
Tu M.P., Yin C.M., Tatar M. Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen. Comp. Endocrinol. 2005;142:347–356. doi: 10.1016/j.ygcen.2005.02.009. PubMed DOI
Zhu S., Liu F., Zeng H., Li N., Ren C., Su Y., Zhou S., Wang G., Palli S.R., Wang J., et al. Insulin/IGF signaling and TORC1 promote vitellogenesis via inducing juvenile hormone biosynthesis in the American cockroach. Development. 2020;147:dev188805. doi: 10.1242/dev.188805. PubMed DOI
Pan X., Pei Y., Zhang C., Huang Y., Chen L., Wei L., Li C., Dong X., Chen X. Effect of Insulin Receptor on Juvenile Hormone Signal and Fecundity in Spodoptera litura (F.) Insects. 2022;13:701. doi: 10.3390/insects13080701. PubMed DOI PMC
Defferrari M.S., Orchard I., Lange A.B. Identification of the first insulin-like peptide in the disease vector Rhodnius prolixus: Involvement in metabolic homeostasis of lipids and carbohydrates. Insect Biochem. Mol. Biol. 2016;70:148–159. doi: 10.1016/j.ibmb.2015.12.009. PubMed DOI
Vafopoulou X., Steel C.G. Insulin-like and testis ecdysiotropin neuropeptides are regulated by the circadian timing system in the brain during larval-adult development in the insect Rhodnius prolixus (Hemiptera) Gen. Comp. Endocrinol. 2012;179:277–288. doi: 10.1016/j.ygcen.2012.08.018. PubMed DOI
Chiang R.G., Chiang J.A. Reproductive physiology in the blood feeding insect, Rhodnius prolixus, from copulation to the control of egg production. J. Insect Physiol. 2017;97:27–37. doi: 10.1016/j.jinsphys.2016.06.001. PubMed DOI
Masumura M., Satake S., Saegusa H., Mizoguchi A. Glucose stimulates the release of bombyxin, an insulin-related peptide of the silkworm Bombyx mori. Gen. Comp. Endocrinol. 2000;118:393–399. doi: 10.1006/gcen.1999.7438. PubMed DOI
Defferrari M.S., Da Silva S.R., Orchard I., Lange A.B. A Rhodnius prolixus Insulin Receptor and Its Conserved Intracellular Signaling Pathway and Regulation of Metabolism. Front. Endocrinol. 2018;9:745. doi: 10.3389/fendo.2018.00745. PubMed DOI PMC
Nouzova M., Rivera-Perez C., Noriega F.G. Allatostatin-C reversibly blocks the transport of citrate out of the mitochondria and inhibits juvenile hormone synthesis in mosquitoes. Insect Biochem. Mol. Biol. 2015;57:20–26. doi: 10.1016/j.ibmb.2014.12.003. PubMed DOI PMC
Kataoka H., Toschi A., Li J.P., Carney R.L., Schooley D.A., Kramer S.J. Identification of an allatotropin from adult Manduca sexta. Science. 1989;243:1481–1483. doi: 10.1126/science.243.4897.1481. PubMed DOI
Masood M., Orchard I. Molecular characterization and possible biological roles of allatotropin in Rhodnius prolixus. Peptides. 2014;53:159–171. doi: 10.1016/j.peptides.2013.10.017. PubMed DOI
Yamanaka N., Yamamoto S., Zitnan D., Watanabe K., Kawada T., Satake H., Kaneko Y., Hiruma K., Tanaka Y., Shinoda T., et al. Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS ONE. 2008;3:e3048. doi: 10.1371/journal.pone.0003048. PubMed DOI PMC
Sedra L., Lange A.B. Cloning and expression of long neuropeptide F and the role of FMRFamide-like peptides in regulating egg production in the Chagas vector, Rhodnius prolixus. Peptides. 2016;82:1–11. doi: 10.1016/j.peptides.2016.05.003. PubMed DOI
Stay B., Tobe S.S. The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. Annu. Rev. Entomol. 2007;52:277–299. doi: 10.1146/annurev.ento.51.110104.151050. PubMed DOI
Sarkar N.R., Tobe S.S., Orchard I. The distribution and effects of Dippu-allatostatin-like peptides in the blood-feeding bug Rhodnius prolixus. Peptides. 2003;24:1553–1562. doi: 10.1016/j.peptides.2003.07.015. PubMed DOI
Chen Z., Rivera-Perez C., Noriega F.G., Kim Y.J. The insect somatostatin pathway gates vitellogenesis progression during reproductive maturation and the post-mating response. Nat. Commun. 2022;13:969. PubMed PMC
Villalobos-Sambucaro M.J., Diambra L.A., Noriega F.G., Ronderos J.R. Allatostatin-C antagonizes the synergistic myostimulatory effect of allatotropin and serotonin in Rhodnius prolixus (Stal) Gen. Comp. Endocrinol. 2016;233:1–7. doi: 10.1016/j.ygcen.2016.05.009. PubMed DOI
Hejnikova M., Paroulek M., Hodkova M. Decrease in Methoprene tolerant and Taiman expression reduces juvenile hormone effects and enhances the levels of juvenile hormone circulating in males of the linden bug Pyrrhocoris apterus. J. Insect Physiol. 2016;93–94:72–80. doi: 10.1016/j.jinsphys.2016.08.009. PubMed DOI
Gijbels M., Lenaerts C., Vanden Broeck J., Marchal E. Juvenile Hormone receptor Met is essential for ovarian maturation in the Desert Locust, Schistocerca gregaria. Sci. Rep. 2019;9:10797. doi: 10.1038/s41598-019-47253-x. PubMed DOI PMC
Cardinal-Aucoin M., Rapp N., Steel C.G. Circadian regulation of hemolymph and ovarian ecdysteroids during egg development in the insect Rhodnius prolixus (Hemiptera) Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2013;166:503–509. doi: 10.1016/j.cbpa.2013.08.003. PubMed DOI
Graf R., Neuenschwander S., Brown M.R., Ackermann U. Insulin-mediated secretion of ecdysteroids from mosquito ovaries and molecular cloning of the insulin receptor homologue from ovaries of blood fed Aedes aegypti. Insect Mol. Biol. 1997;6:151–163. doi: 10.1111/j.1365-2583.1997.tb00083.x. PubMed DOI
Manière G., Rondot I., Büllesbach E.E., Gautron F., Vanhems E., Delbecque J.P. Control of ovarian steroidogenesis by insulin-like peptides in the blowfly (Phormia regina) J. Endocrinol. 2004;181:147–156. doi: 10.1677/joe.0.1810147. PubMed DOI
Orchard I., Leyria J., Al-Dailami A., Lange A.B. Fluid secretion by Malpighian tubules of Rhodnius prolixus: Neuroendocrine control with new insights from a transcriptome analysis. Front. Endocrinol. 2021;12:722487. doi: 10.3389/fendo.2021.722487. PubMed DOI PMC
Davey K.G., Singleton D.M. Activation of the corpus allatum and egg production without feeding in the adult female of Rhodnius prolixus. Internat J. Invert. Reprod. Dev. 1989;16:131–134. doi: 10.1080/07924259.1989.9672068. DOI
Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Nouzova M., Michalkova V., Hernández-Martínez S., Rivera-Perez C., Ramirez C.E., Fernandez-Lima F., Noriega F.G. JH biosynthesis and hemolymph titers in adult male Aedes aegypti mosquitoes. Insect Biochem. Mol. Biol. 2018;95:10–16. doi: 10.1016/j.ibmb.2018.02.005. PubMed DOI PMC
Zandawala M., Lytvyn Y., Taiakina D., Orchard I. Cloning of the cDNA, localization, and physiological effects of FGLamide-related allatostatins in the blood-gorging bug, Rhodnius prolixus. Insect Biochem. Mol. Biol. 2012;42:10–21. doi: 10.1016/j.ibmb.2011.10.002. PubMed DOI
Ramirez C.E., Nouzova M., Michalkova V., Fernandez-Lima F., Noriega F.G. Common structural features facilitate the simultaneous identification and quantification of the five most common juvenile hormones by liquid chromatography-tandem mass spectrometry. Insect Biochem. Mol. Biol. 2020;116:103287. doi: 10.1016/j.ibmb.2019.103287. PubMed DOI PMC
Abuhagr A.M., Blindert J.L., Nimitkul S., Zander I.A., Labere S.M., Chang S.A., Maclea K.S., Chang E.S., Mykles D.L. Molt regulation in green and red color morphs of the crab Carcinus maenas: Gene expression of molt-inhibiting hormone signaling components. J. Exp. Biol. 2014;217:796–808. doi: 10.1242/jeb.107326. PubMed DOI
Juvenile hormones direct primordial germ cell migration to the embryonic gonad