Crosstalk between Nutrition, Insulin, Juvenile Hormone, and Ecdysteroid Signaling in the Classical Insect Model, Rhodnius prolixus

. 2022 Dec 20 ; 24 (1) : . [epub] 20221220

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36613451

Grantová podpora
RGPIN-2019-05775 (ABL) and RGPIN-2017-06402 (IO) Natural Sciences and Engineering Research Council

The rigorous balance of endocrine signals that control insect reproductive physiology is crucial for the success of egg production. Rhodnius prolixus, a blood-feeding insect and main vector of Chagas disease, has been used over the last century as a model to unravel aspects of insect metabolism and physiology. Our recent work has shown that nutrition, insulin signaling, and two main types of insect lipophilic hormones, juvenile hormone (JH) and ecdysteroids, are essential for successful reproduction in R. prolixus; however, the interplay behind these endocrine signals has not been established. We used a combination of hormone treatments, gene expression analyses, hormone measurements, and ex vivo experiments using the corpus allatum or the ovary, to investigate how the interaction of these endocrine signals might define the hormone environment for egg production. The results show that after a blood meal, circulating JH levels increase, a process mainly driven through insulin and allatoregulatory neuropeptides. In turn, JH feeds back to provide some control over its own biosynthesis by regulating the expression of critical biosynthetic enzymes in the corpus allatum. Interestingly, insulin also stimulates the synthesis and release of ecdysteroids from the ovary. This study highlights the complex network of endocrine signals that, together, coordinate a successful reproductive cycle.

Zobrazit více v PubMed

Nur Aliah N.A., Ab-Rahim S., Moore H.E., Heo C.C. Juvenile hormone: Production, regulation, current application in vector control and its future applications. Trop Biomed. 2021;38:254–264. PubMed

Roy S., Saha T.T., Zou Z., Raikhel A.S. Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 2018;63:489–511. doi: 10.1146/annurev-ento-020117-043258. PubMed DOI

Wu Z., Yang L., He Q., Zhou S. Regulatory mechanisms of vitellogenesis in Insects. Front. Cell Dev. Biol. 2021;8:593613. doi: 10.3389/fcell.2020.593613. PubMed DOI PMC

Smykal V., Raikhel A.S. Nutritional control of insect reproduction. Curr. Opin. Insect Sci. 2015;11:31–38. doi: 10.1016/j.cois.2015.08.003. PubMed DOI PMC

Khalid M.Z., Ahmad S., Ngegba P.M., Zhong G. Role of Endocrine System in the Regulation of Female Insect Reproduction. Biology. 2021;10:614. doi: 10.3390/biology10070614. PubMed DOI PMC

Das D., Arur S. Conserved insulin signaling in the regulation of oocyte growth, development, and maturation. Mol. Reprod. Dev. 2017;84:444–459. doi: 10.1002/mrd.22806. PubMed DOI PMC

Vitali V., Horn F., Catania F. Insulin-like signaling within and beyond metazoans. Biol. Chem. 2018;399:851–857. doi: 10.1515/hsz-2018-0135. PubMed DOI

Veenstra J.A., Leyria J., Orchard I., Lange A.B. Identification of Gonadulin and Insulin-Like Growth Factor from Migratory Locusts and Their Importance in Reproduction in Locusta migratoria. Front. Endocrinol. 2021;12:693068. doi: 10.3389/fendo.2021.693068. PubMed DOI PMC

Nässel D.R., Vanden Broeck J. Insulin/IGF signaling in Drosophila and other insects: Factors that regulate production, release and post-release action of the insulin-like peptides. Cell Mol. Life Sci. 2016;73:271–290. doi: 10.1007/s00018-015-2063-3. PubMed DOI PMC

Mizoguchi A., Okamoto N. Insulin-Like and IGF-like Peptides in the Silkmoth Bombyx Mori: Discovery, Structure, Secretion, and Function. Front. Physiol. 2013;4:217. doi: 10.3389/fphys.2013.00217. PubMed DOI PMC

Ons S., Sterkel M., Diambra L., Urlaub H., Rivera-Pomar R. Neuropeptide precursor gene discovery in the Chagas disease vector Rhodnius prolixus. Insect Mol. Biol. 2011;20:29–44. doi: 10.1111/j.1365-2583.2010.01050.x. PubMed DOI

Defferrari M.S., Orchard I., Lange A.B. An insulin-like growth factor in Rhodnius prolixus is involved in post-feeding nutrient balance and growth. Front. Neurosci. 2016;10:566. doi: 10.3389/fnins.2016.00566. PubMed DOI PMC

Veenstra J.A. Arthropod IGF, relaxin and gonadulin, putative orthologs of Drosophila insulin-like peptides 6, 7 and 8, likely originated from an ancient gene triplication. PeerJ. 2020;8:e9534. doi: 10.7717/peerj.9534. PubMed DOI PMC

Badisco L., Van Wielendaele P., Vanden Broeck J. Eat to reproduce: A key role for the insulin signaling pathway in adult insects. Front. Physiol. 2013;4:202. doi: 10.3389/fphys.2013.00202. PubMed DOI PMC

Sharma A., Nuss A.B., Gulia-Nuss M. Insulin-Like Peptide Signaling in Mosquitoes: The Road Behind and the Road Ahead. Front. Endocrinol. 2019;10:166. doi: 10.3389/fendo.2019.00166. PubMed DOI PMC

Leyria J., Orchard I., Lange A.B. Transcriptomic analysis of regulatory pathways involved in female reproductive physiology of Rhodnius prolixus under different nutritional states. Sci. Rep. 2020;10:11431. doi: 10.1038/s41598-020-67932-4. PubMed DOI PMC

Leyria J., Orchard I., Lange A.B. The involvement of insulin/ToR signaling pathway in reproductive performance of Rhodnius prolixus. Insect Biochem. Mol. Biol. 2021;130:103526. doi: 10.1016/j.ibmb.2021.103526. PubMed DOI

Liao S., Nässel D.R. Drosophila Insulin-Like Peptide 8 (DILP8) in Ovarian Follicle Cells Regulates Ovulation and Metabolism. Front. Endocrinol. 2020;11:461. doi: 10.3389/fendo.2020.00461. PubMed DOI PMC

Leyria J., Philip R., Orchard I., Lange A.B. Gonadulin: A newly discovered insulin-like peptide involved in ovulation and oviposition in Rhodnius prolixus, a vector of Chagas disease. Insect Biochem. Mol. Biol. 2022;150:103848. doi: 10.1016/j.ibmb.2022.103848. PubMed DOI

Riehle M.A., Brown M.R. Insulin stimulates ecdysteroid production through a conserved signaling cascade in the mosquito Aedes aegypti. Insect Biochem. Mol. Biol. 1999;29:855–860. doi: 10.1016/S0965-1748(99)00084-3. PubMed DOI

Tatar M., Kopelman A., Epstein D., Tu M.P., Yin C.M., Garofalo R.S. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001;292:107–110. doi: 10.1126/science.1057987. PubMed DOI

Terashima J., Bownes M. Translating available food into the number of eggs laid by Drosophila melanogaster. Genetics. 2004;167:1711–1719. doi: 10.1534/genetics.103.024323. PubMed DOI PMC

Roy S.G., Hansen I.A., Raikhel A.S. Effect of insulin and 20-hydroxyecdysone in the fat body of the yellow fever mosquito Aedes aegypti. Insect Biochem. Mol. Biol. 2007;37:1317–1326. doi: 10.1016/j.ibmb.2007.08.004. PubMed DOI PMC

Maestro J.L., Cobo J., Belles X. Target of rapamycin (TOR) mediates the transduction of nutritional signals into juvenile hormone production. J. Biol. Chem. 2009;284:5506–5513. doi: 10.1074/jbc.M807042200. PubMed DOI

Perez-Hedo M., Rivera-Perez C., Noriega F.G. The insulin/TOR signal transduction pathway is involved in the nutritional regulation of juvenile hormone synthesis in Aedes aegypti. Insect Biochem. Mol. Biol. 2013;43:495–500. doi: 10.1016/j.ibmb.2013.03.008. PubMed DOI PMC

Abrisqueta M., Süren-Castillo S., Maestro J.L. Insulin receptor-mediated nutritional signalling regulates juvenile hormone biosynthesis and vitellogenin production in the German cockroach. Insect Biochem. Mol. Biol. 2014;49:14–23. doi: 10.1016/j.ibmb.2014.03.005. PubMed DOI

De Loof A., Boerjan B., Ernst U.R., Schoofs L. The mode of action of juvenile hormone and ecdysone: Towards an epi-endocrinological paradigm? Gen. Comp. Endocrinol. 2013;188:35–45. doi: 10.1016/j.ygcen.2013.02.004. PubMed DOI

Rewitz K.F., Rybczynski R., Warren J.T., Gilbert L.I. The Halloween Genes Code for Cytochrome P450 Enzymes Mediating Synthesis of the Insect Moulting Hormone. Biochem. Soc. Trans. 2006;34:1256–1260. doi: 10.1042/BST0341256. PubMed DOI

Bellés X., Cassier P., Cerdá X., Pascual N., André M., Rósso Y., Piulachs M.D. Induction of choriogenesis by 20-hydroxyecdysone in the german cockroach. Tissue Cell. 1993;25:195–204. doi: 10.1016/0040-8166(93)90019-H. PubMed DOI

Hackney J.F., Pucci C., Naes E., Dobens L. Ras signaling modulates activity of the ecdysone receptor EcR during cell migration in the Drosophila ovary. Dev. Dyn. 2007;236:1213–1226. doi: 10.1002/dvdy.21140. PubMed DOI

Bernardi F., Romani P., Tzertzinis G., Gargiulo G., Cavaliere V. EcR-B1 and Usp nuclear hormone receptors regulate expression of the VM32E eggshell gene during Drosophila oogenesis. Dev. Biol. 2009;328:541–551. doi: 10.1016/j.ydbio.2009.01.013. PubMed DOI

Parthasarathy R., Sheng Z., Sun Z., Palli S.R. Ecdysteroid regulation of ovarian growth and oocyte maturation in the red flour beetle, Tribolium castaneum. Insect Biochem. Mol. Biol. 2010;40:429–439. doi: 10.1016/j.ibmb.2010.04.002. PubMed DOI PMC

Belles X., Piulachs M.-D. Ecdysone signalling and ovarian development in insects: From stem cells to ovarian follicle formation. Biochim. Biophys. Acta Gene Regul. Mech. 2015;1849:181–186. doi: 10.1016/j.bbagrm.2014.05.025. PubMed DOI

Lenaerts C., Marchal E., Peeters P., Vanden Broeck J. The ecdysone receptor complex is essential for the reproductive success in the female desert locust, Schistocerca gregaria. Sci. Rep. 2019;9:15. doi: 10.1038/s41598-018-36763-9. PubMed DOI PMC

Swevers L. An update on ecdysone signaling during insect oogenesis. Curr. Opin. Insect Sci. 2019;31:8–13. doi: 10.1016/j.cois.2018.07.003. PubMed DOI

Zhou X., Ye Y.Z., Ogihara M.H., Takeshima M., Fujinaga D., Liu C.W., Zhu Z., Kataoka H., Bao Y.Y. Functional analysis of ecdysteroid biosynthetic enzymes of the rice planthopper, Nilaparvata lugens. Insect Biochem. Mol. Biol. 2020;123:103428. doi: 10.1016/j.ibmb.2020.103428. PubMed DOI

Zhu Z., Tong C., Qiu B., Yang H., Xu J., Zheng S., Song Q., Feng Q., Deng H. 20E-mediated regulation of BmKr-h1 by BmKRP promotes oocyte maturation. BMC Biol. 2021;2021 19:39. doi: 10.1186/s12915-021-00952-2. PubMed DOI PMC

De Loof A., Briers T., Huybrechts R. Presence and function of ecdysteroids in adult insects. Comp. Biochem. Physiol. B Comp. Biochem. 1984;79:505–509. doi: 10.1016/0305-0491(84)90356-0. DOI

Bownes M. The roles of juvenile hormone, ecdysone and the ovary in the control of Drosophila vitellogenesis. J. Insect Physiol. 1989;35:409–413. doi: 10.1016/0022-1910(89)90115-7. DOI

Peng L., Wang L., Zou M.M., Vasseur L., Chu L.N., Qin Y.D., Zhai Y.L., You M.S. Identification of Halloween Genes and RNA Interference-Mediated Functional Characterization of a Halloween Gene shadow in Plutella xylostella. Front. Physiol. 2019;10:1120. doi: 10.3389/fphys.2019.01120. PubMed DOI PMC

Davey K. The interaction of feeding and mating in the hormonal control of egg production in Rhodnius prolixus. J. Insect Physiol. 2007;53:208–215. doi: 10.1016/j.jinsphys.2006.10.002. PubMed DOI

Hult E.F., Huang J., Marchal E., Lam J., Tobe S.S. RXR/USP and EcR are critical for the regulation of reproduction and the control of JH biosynthesis in Diploptera punctata. J. Insect Physiol. 2015;80:48–60. doi: 10.1016/j.jinsphys.2015.04.006. PubMed DOI

Noriega F.G. Juvenile Hormone Biosynthesis in Insects: What Is New, What Do We Know, and What Questions Remain? Int. Sch. Res. Notices. 2014;2014:967361. doi: 10.1155/2014/967361. PubMed DOI PMC

Tsang S.S.K., Law S.T.S., Li C., Qu Z., Bendena W.G., Tobe S.S., Hui J.H.L. Diversity of Insect Sesquiterpenoid Regulation. Front. Genet. 2020;11:1027. doi: 10.3389/fgene.2020.01027. PubMed DOI PMC

Verlinden H., Gijbels M., Lismont E., Lenaerts C., Vanden Broeck J., Marchal E. The pleiotropic allatoregulatory neuropeptides and their receptors: A mini-review. J. Insect Physiol. 2015;80:2–14. doi: 10.1016/j.jinsphys.2015.04.004. PubMed DOI

Luo W., Liu S., Zhang W., Yang L., Huang J., Zhou S., Feng Q., Palli S.R., Wang J., Roth S., et al. Juvenile hormone signaling promotes ovulation and maintains egg shape by inducing expression of extracellular matrix genes. Proc. Natl. Acad. Sci. USA. 2021;118:e2104461118. doi: 10.1073/pnas.2104461118. PubMed DOI PMC

Lange A.B., Leyria J., Orchard I. The hormonal and neural control of egg production in the historically important model insect, Rhodnius prolixus: A review, with new insights in this post-genomic era. Gen. Comp. Endocrinol. 2022;321–322:114030. doi: 10.1016/j.ygcen.2022.114030. PubMed DOI

Wigglesworth V.B. Factors Controlling Moulting and ‘Metamorphosis’ in an Insect. Nature. 1934;133:725–726. doi: 10.1038/133725b0. DOI

Avaria A., Ventura-Garcia L., Sanmartino M., Van der Laat C. Population movements, borders, and Chagas disease. Mem. Inst. Oswaldo Cruz. 2022;117:e210151. doi: 10.1590/0074-02760210151. PubMed DOI PMC

Villalobos-Sambucaro M.J., Nouzova M., Ramirez C.E., Alzugaray M.E., Fernandez-Lima F., Ronderos J.R., Noriega F.G. The juvenile hormone described in Rhodnius prolixus by Wigglesworth is juvenile hormone III skipped bisepoxide. Sci. Rep. 2020;10:3091. doi: 10.1038/s41598-020-59495-1. PubMed DOI PMC

Leyria J., Orchard I., Lange A.B. Impact of JH signaling on reproductive physiology of the classical insect model, Rhodnius prolixus. J. Int. Mol. Sci. 2022;23:13832. doi: 10.3390/ijms232213832. PubMed DOI PMC

Benrabaa S., Orchard I., Lange A.B. The role of ecdysteroid in the regulation of ovarian growth and oocyte maturation in Rhodnius prolixus, a vector of Chagas disease. J. Exp. Biol. 2022;225:jeb244830. doi: 10.1242/jeb.244830. PubMed DOI

Noriega F.G., Nouzova M. Approaches and Tools to Study the Roles of Juvenile Hormones in Controlling Insect Biology. Insects. 2020;11:858. doi: 10.3390/insects11120858. PubMed DOI PMC

Wang Z., Davey K. The role of juvenile hormone in vitellogenin production in Rhodnius prolixus. J. Insect Physiol. 1993;39:471–476. doi: 10.1016/0022-1910(93)90078-6. DOI

Ramos F.O., Leyria J., Nouzova M., Fruttero L.L., Noriega F.G., Canavoso L.E. Juvenile hormone mediates lipid storage in the oocytes of Dipetalogaster maxima. Insect Biochem. Mol. Biol. 2021;133:103499. doi: 10.1016/j.ibmb.2020.103499. PubMed DOI

Matsumoto K., Kotaki T., Numata H., Shinada T., Goto S.G. Juvenile hormone III skipped bisepoxide is widespread in true bugs (Hemiptera: Heteroptera) R Soc. Open Sci. 2021;8:202242. doi: 10.1098/rsos.202242. PubMed DOI PMC

Nouzova M., Edwards M.J., Michalkova V., Ramirez C.E., Ruiz M., Areiza M., DeGennaro M., Fernandez-Lima F., Feyereisen R., Jindra M., et al. Epoxidation of juvenile hormone was a key innovation improving insect reproductive fitness. Proc. Natl. Acad. Sci. USA. 2021;118:e2109381118. doi: 10.1073/pnas.2109381118. PubMed DOI PMC

Noriega F.G. Autogeny in three species of Triatominae: Rhodnius prolixus, Triatoma rubrovaria, and Triatoma infestans (Hemiptera: Reduviidae) J. Med. Entomol. 1992;29:273–277. doi: 10.1093/jmedent/29.2.273. PubMed DOI

Lenaerts C., Monjon E., Van Lommel J., Verbakel L., Vanden Broeck J. Peptides in insect oogenesis. Curr. Opin. Insect Sci. 2019;31:58–64. doi: 10.1016/j.cois.2018.08.007. PubMed DOI

Tu M.P., Yin C.M., Tatar M. Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen. Comp. Endocrinol. 2005;142:347–356. doi: 10.1016/j.ygcen.2005.02.009. PubMed DOI

Zhu S., Liu F., Zeng H., Li N., Ren C., Su Y., Zhou S., Wang G., Palli S.R., Wang J., et al. Insulin/IGF signaling and TORC1 promote vitellogenesis via inducing juvenile hormone biosynthesis in the American cockroach. Development. 2020;147:dev188805. doi: 10.1242/dev.188805. PubMed DOI

Pan X., Pei Y., Zhang C., Huang Y., Chen L., Wei L., Li C., Dong X., Chen X. Effect of Insulin Receptor on Juvenile Hormone Signal and Fecundity in Spodoptera litura (F.) Insects. 2022;13:701. doi: 10.3390/insects13080701. PubMed DOI PMC

Defferrari M.S., Orchard I., Lange A.B. Identification of the first insulin-like peptide in the disease vector Rhodnius prolixus: Involvement in metabolic homeostasis of lipids and carbohydrates. Insect Biochem. Mol. Biol. 2016;70:148–159. doi: 10.1016/j.ibmb.2015.12.009. PubMed DOI

Vafopoulou X., Steel C.G. Insulin-like and testis ecdysiotropin neuropeptides are regulated by the circadian timing system in the brain during larval-adult development in the insect Rhodnius prolixus (Hemiptera) Gen. Comp. Endocrinol. 2012;179:277–288. doi: 10.1016/j.ygcen.2012.08.018. PubMed DOI

Chiang R.G., Chiang J.A. Reproductive physiology in the blood feeding insect, Rhodnius prolixus, from copulation to the control of egg production. J. Insect Physiol. 2017;97:27–37. doi: 10.1016/j.jinsphys.2016.06.001. PubMed DOI

Masumura M., Satake S., Saegusa H., Mizoguchi A. Glucose stimulates the release of bombyxin, an insulin-related peptide of the silkworm Bombyx mori. Gen. Comp. Endocrinol. 2000;118:393–399. doi: 10.1006/gcen.1999.7438. PubMed DOI

Defferrari M.S., Da Silva S.R., Orchard I., Lange A.B. A Rhodnius prolixus Insulin Receptor and Its Conserved Intracellular Signaling Pathway and Regulation of Metabolism. Front. Endocrinol. 2018;9:745. doi: 10.3389/fendo.2018.00745. PubMed DOI PMC

Nouzova M., Rivera-Perez C., Noriega F.G. Allatostatin-C reversibly blocks the transport of citrate out of the mitochondria and inhibits juvenile hormone synthesis in mosquitoes. Insect Biochem. Mol. Biol. 2015;57:20–26. doi: 10.1016/j.ibmb.2014.12.003. PubMed DOI PMC

Kataoka H., Toschi A., Li J.P., Carney R.L., Schooley D.A., Kramer S.J. Identification of an allatotropin from adult Manduca sexta. Science. 1989;243:1481–1483. doi: 10.1126/science.243.4897.1481. PubMed DOI

Masood M., Orchard I. Molecular characterization and possible biological roles of allatotropin in Rhodnius prolixus. Peptides. 2014;53:159–171. doi: 10.1016/j.peptides.2013.10.017. PubMed DOI

Yamanaka N., Yamamoto S., Zitnan D., Watanabe K., Kawada T., Satake H., Kaneko Y., Hiruma K., Tanaka Y., Shinoda T., et al. Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS ONE. 2008;3:e3048. doi: 10.1371/journal.pone.0003048. PubMed DOI PMC

Sedra L., Lange A.B. Cloning and expression of long neuropeptide F and the role of FMRFamide-like peptides in regulating egg production in the Chagas vector, Rhodnius prolixus. Peptides. 2016;82:1–11. doi: 10.1016/j.peptides.2016.05.003. PubMed DOI

Stay B., Tobe S.S. The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. Annu. Rev. Entomol. 2007;52:277–299. doi: 10.1146/annurev.ento.51.110104.151050. PubMed DOI

Sarkar N.R., Tobe S.S., Orchard I. The distribution and effects of Dippu-allatostatin-like peptides in the blood-feeding bug Rhodnius prolixus. Peptides. 2003;24:1553–1562. doi: 10.1016/j.peptides.2003.07.015. PubMed DOI

Chen Z., Rivera-Perez C., Noriega F.G., Kim Y.J. The insect somatostatin pathway gates vitellogenesis progression during reproductive maturation and the post-mating response. Nat. Commun. 2022;13:969. PubMed PMC

Villalobos-Sambucaro M.J., Diambra L.A., Noriega F.G., Ronderos J.R. Allatostatin-C antagonizes the synergistic myostimulatory effect of allatotropin and serotonin in Rhodnius prolixus (Stal) Gen. Comp. Endocrinol. 2016;233:1–7. doi: 10.1016/j.ygcen.2016.05.009. PubMed DOI

Hejnikova M., Paroulek M., Hodkova M. Decrease in Methoprene tolerant and Taiman expression reduces juvenile hormone effects and enhances the levels of juvenile hormone circulating in males of the linden bug Pyrrhocoris apterus. J. Insect Physiol. 2016;93–94:72–80. doi: 10.1016/j.jinsphys.2016.08.009. PubMed DOI

Gijbels M., Lenaerts C., Vanden Broeck J., Marchal E. Juvenile Hormone receptor Met is essential for ovarian maturation in the Desert Locust, Schistocerca gregaria. Sci. Rep. 2019;9:10797. doi: 10.1038/s41598-019-47253-x. PubMed DOI PMC

Cardinal-Aucoin M., Rapp N., Steel C.G. Circadian regulation of hemolymph and ovarian ecdysteroids during egg development in the insect Rhodnius prolixus (Hemiptera) Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2013;166:503–509. doi: 10.1016/j.cbpa.2013.08.003. PubMed DOI

Graf R., Neuenschwander S., Brown M.R., Ackermann U. Insulin-mediated secretion of ecdysteroids from mosquito ovaries and molecular cloning of the insulin receptor homologue from ovaries of blood fed Aedes aegypti. Insect Mol. Biol. 1997;6:151–163. doi: 10.1111/j.1365-2583.1997.tb00083.x. PubMed DOI

Manière G., Rondot I., Büllesbach E.E., Gautron F., Vanhems E., Delbecque J.P. Control of ovarian steroidogenesis by insulin-like peptides in the blowfly (Phormia regina) J. Endocrinol. 2004;181:147–156. doi: 10.1677/joe.0.1810147. PubMed DOI

Orchard I., Leyria J., Al-Dailami A., Lange A.B. Fluid secretion by Malpighian tubules of Rhodnius prolixus: Neuroendocrine control with new insights from a transcriptome analysis. Front. Endocrinol. 2021;12:722487. doi: 10.3389/fendo.2021.722487. PubMed DOI PMC

Davey K.G., Singleton D.M. Activation of the corpus allatum and egg production without feeding in the adult female of Rhodnius prolixus. Internat J. Invert. Reprod. Dev. 1989;16:131–134. doi: 10.1080/07924259.1989.9672068. DOI

Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Nouzova M., Michalkova V., Hernández-Martínez S., Rivera-Perez C., Ramirez C.E., Fernandez-Lima F., Noriega F.G. JH biosynthesis and hemolymph titers in adult male Aedes aegypti mosquitoes. Insect Biochem. Mol. Biol. 2018;95:10–16. doi: 10.1016/j.ibmb.2018.02.005. PubMed DOI PMC

Zandawala M., Lytvyn Y., Taiakina D., Orchard I. Cloning of the cDNA, localization, and physiological effects of FGLamide-related allatostatins in the blood-gorging bug, Rhodnius prolixus. Insect Biochem. Mol. Biol. 2012;42:10–21. doi: 10.1016/j.ibmb.2011.10.002. PubMed DOI

Ramirez C.E., Nouzova M., Michalkova V., Fernandez-Lima F., Noriega F.G. Common structural features facilitate the simultaneous identification and quantification of the five most common juvenile hormones by liquid chromatography-tandem mass spectrometry. Insect Biochem. Mol. Biol. 2020;116:103287. doi: 10.1016/j.ibmb.2019.103287. PubMed DOI PMC

Abuhagr A.M., Blindert J.L., Nimitkul S., Zander I.A., Labere S.M., Chang S.A., Maclea K.S., Chang E.S., Mykles D.L. Molt regulation in green and red color morphs of the crab Carcinus maenas: Gene expression of molt-inhibiting hormone signaling components. J. Exp. Biol. 2014;217:796–808. doi: 10.1242/jeb.107326. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace