The insect somatostatin pathway gates vitellogenesis progression during reproductive maturation and the post-mating response
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 AI045545
NIAID NIH HHS - United States
PubMed
35181671
PubMed Central
PMC8857180
DOI
10.1038/s41467-022-28592-2
PII: 10.1038/s41467-022-28592-2
Knihovny.cz E-zdroje
- MeSH
- Drosophila melanogaster fyziologie MeSH
- geneticky modifikovaná zvířata MeSH
- neurony metabolismus MeSH
- oocyty růst a vývoj MeSH
- proteiny Drosophily genetika metabolismus MeSH
- sexuální chování zvířat MeSH
- somatostatin metabolismus MeSH
- vitelogeneze * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- AstC protein, Drosophila MeSH Prohlížeč
- proteiny Drosophily MeSH
- somatostatin MeSH
Vitellogenesis (yolk accumulation) begins upon eclosion and continues through the process of sexual maturation. Upon reaching sexual maturity, vitellogenesis is placed on hold until it is induced again by mating. However, the mechanisms that gate vitellogenesis in response to developmental and reproductive signals remain unclear. Here, we have identified the neuropeptide allatostatin-C (AstC)-producing neurons that gate both the initiation of vitellogenesis that occurs post-eclosion and its re-initiation post-mating. During sexual maturation, the AstC neurons receive excitatory inputs from Sex Peptide Abdominal Ganglion (SAG) neurons. In mature virgin females, high sustained activity of SAG neurons shuts off vitellogenesis via continuous activation of the AstC neurons. Upon mating, however, Sex Peptide inhibits SAG neurons, leading to deactivation of the AstC neurons. As a result, this permits both JH biosynthesis and the progression of vitellogenesis in mated females. Our work has uncovered a central neural circuit that gates the progression of oogenesis.
Zobrazit více v PubMed
Lin H. The stem-cell niche theory: lessons from flies. Nat. Rev. Genet. 2002;3:931–940. PubMed
Spradling, A. C. The Development of Drosophila melanogaster (eds Bate, M., & Martinez-Arias, A.), Vol. 1, 1–70 (Cold Spring Harbor Laboratory Press, 1993).
Swevers, L., Raikhel, A. S., Sappington, T. W., Shirk, P. & Iatrou, K. Comprehensive Molecular Insect Science (eds Gilbert, L. I. & Iatrou, K.) Vol. 1, 87–155 (Elsevier, 2005).
Jowett T, Postlethwait JH. The regulation of yolk polypeptide synthesis in Drosophila ovaries and fat body by 20-hydroxyecdysone and a juvenile hormone analog. Dev. Biol. 1980;80:225–234. PubMed
Postlethwait JH, Handler AM. The roles of juvenile hormone and 20-hydroxy-ecdysone during vitellogenesis in isolated abdomens of Drosophila melanogaster. J. Insect Physiol. 1979;25:455–460.
Soller, M., Bownes, M. & Kubli, E. Mating and sex peptide stimulate the accumulation of yolk in oocytes of Droosophila melanogaster. Eur. J. Biochem. 243, 732–738 (1997). PubMed
Ameku, T. & Niwa, R. Mating-induced increase in germline stem cells via the neuroendocrine system in female Drosophila. PLoS Genet. 12, e1006123 (2016). PubMed PMC
Avila, F. W., Sirot, L. K., Laflamme, B. A., Rubinstein, C. D. & Wolfner, M. F. Insect seminal fluid proteins: identification and function. Annu. Rev. Entomol. 56, 21–40 (2011). PubMed PMC
Chen PS, et al. A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell. 1988;54:291–298. PubMed
Peng J, et al. Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila. Curr. Biol. 2005;15:207–213. PubMed
Yapici N, Kim YJ, Ribeiro C, Dickson BJ. A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature. 2008;451:33–37. PubMed
Yang C, et al. Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron. 2009;61:519–526. PubMed PMC
Häsemeyer, M., Yapici, N., Heberlein, U. & Dickson, B. J. Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron61, 511–518 (2009). PubMed
Rezával C, et al. Neural circuitry underlying Drosophila female postmating behavioral responses. Curr. Biol. 2012;22:1155–1165. PubMed PMC
Jang YH, Chae HS, Kim YJ. Female-specific myoinhibitory peptide neurons regulate mating receptivity in Drosophila melanogaster. Nat. Commun. 2017;8:1–12. PubMed PMC
Feng K, Palfreyman MT, Häsemeyer M, Talsma A, Dickson BJ. Ascending SAG neurons control sexual receptivity of Drosophila females. Neuron. 2014;83:135–148. PubMed
Wang K, et al. Neural circuit mechanisms of sexual receptivity in Drosophila females. Nature. 2021;589:577–581. PubMed
Wang F, et al. Neural circuitry linking mating and egg laying in Drosophila females. Nature. 2020;579:101–105. PubMed PMC
Walker SJ, Corrales-Carvajal VM, Ribeiro C. Postmating circuitry modulates salt taste processing to increase reproductive output in Drosophila. Curr. Biol. 2015;25:2621–2630. PubMed
Garbe DS, et al. Changes in female Drosophila sleep following mating are mediated by SPSN-SAG neurons. J. Biol. Rhythms. 2016;31:551–567. PubMed
Kramer SJ, et al. Identification of an allatostatin from the tobacco hornworm Manduca sexta. Proc. Natl Acad. Sci. USA. 1991;88:9458–9462. PubMed PMC
Wang C, Zhang J, Tobe SS, Bendena WG. Defining the contribution of select neuropeptides and their receptors in regulating sesquiterpenoid biosynthesis by Drosophila melanogaster ring gland/corpus allatum through RNAi analysis. Gen. Comp. Endocrinol. 2012;176:347–353. PubMed
Zhang, C. et al. The neuropeptide allatostatin C from clock-associated DN1p neurons generates the circadian rhythm for oogenesis. Proc. Natl. Acad. Sci. USA118, e2016878118 (2021). PubMed PMC
Johns D, Marx R. Inducible genetic suppression of neuronal excitability. J. Neurosci. 1999;19:1691–1697. PubMed PMC
Kitamoto T. Conditional modification of behavior in Drosophila by targeted expression of a temperature‐sensitive shibire allele in defined neurons. J. Neurobiol. 2001;47:81–92. PubMed
Luan, H., Peabody, N. C., Vinson, C. R. R. & White, B. H. Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron52, 425–436 (2006). PubMed PMC
Gao Q, Finkelstein R. Targeting gene expression to the head: the Drosophila orthodenticle gene is a direct target of the Bicoid morphogen. Development. 1998;125:4185–4193. PubMed
Asahina K, et al. Tachykinin-expressing neurons control male-specific aggressive arousal in drosophila. Cell. 2014;156:221–235. PubMed PMC
Gao XJ, et al. A transcriptional reporter of intracellular Ca2+ in Drosophila. Nat. Neurosci. 2015;18:917–925. PubMed PMC
Nicolaï LJJ, et al. Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila. Proc. Natl Acad. Sci. USA. 2010;107:20553–20558. PubMed PMC
Zhang YQ, Rodesch CK, Broadie K. Living synaptic vesicle marker: synaptotagmin-GFP. Genesis. 2002;34:142–145. PubMed
Fichelson P, Brigui A, Pichaud F. Orthodenticle and Kruppel homolog 1 regulate Drosophila photoreceptor maturation. Proc. Natl Acad. Sci. USA. 2012;109:7893–7898. PubMed PMC
Kreienkamp HJ, et al. Functional annotation of two orphan G-protein-coupled receptors, drostar1 and -2, from Drosophila melanogaster and their ligands by reverse pharmacology. J. Biol. Chem. 2002;277:39937–39943. PubMed
Kondo S, et al. Neurochemical Organization of the Drosophila brain visualized by endogenously tagged neurotransmitter receptors. Cell Rep. 2020;30:284–297.e5. PubMed
Wijesekera, T. P., Saurabh, S. & Dauwalder, B. Juvenile hormone is required in adult males for drosophila courtship. PLoS ONE11, e0151912 (2016). PubMed PMC
Kubrak, O. et al. The gut hormone Allatostatin C/Somatostatin regulates food intake and metabolic homeostasis under nutrient stress. Nat. Commun.13, 629 (2022). PubMed PMC
Ro, J., Harvanek, Z. M. & Pletcher, S. D. FLIC: high-throughput, continuous analysis of feeding behaviors in Drosophila. PLoS ONE9, e101107 (2014). PubMed PMC
de Velasco B, et al. Specification and development of the pars intercerebralis and pars lateralis, neuroendocrine command centers in the Drosophila brain. Dev. Biol. 2007;302:309–323. PubMed
Shiga S. Anatomy and functions of brain neurosecretory cells in diptera. Microsc. Res. Tech. 2003;62:114–131. PubMed
Jia D, Xu Q, Xie Q, Mio W, Deng WM. Automatic stage identification of Drosophila egg chamber based on DAPI images. Sci. Rep. 2016;6:1–12. PubMed PMC
Meiselman M, et al. Endocrine network essential for reproductive success in Drosophila melanogaster. Proc. Natl Acad. Sci. USA. 2017;114:E3849–E3858. PubMed PMC
Talay M, et al. Transsynaptic mapping of second-order taste neurons in flies by trans-tango. Neuron. 2017;96:783–795.e4. PubMed PMC
Bhattarai JP, et al. Somatostatin inhibition of gonadotropin-releasing hormone neurons in female and male mice. Endocrinology. 2010;151:3258–3266. PubMed
Postlethwait JH, Shirk PD. Genetic and endocrine regulation of vitellogenesis in Drosophila. Integr. Comp. Biol. 1981;21:687–700.
Bownes M. The roles of juvenile hormone, ecdysone and the ovary in the control of Drosophila vitellogenesis. J. Insect Physiol. 1989;35:409–413.
Bownes M, Rembold H. The titre of juvenile hormone during the pupal and adult stages of the life cycle of Drosophila melanogaster. Eur. J. Biochem. 1987;164:709–712. PubMed
Sugime Y, et al. Upregulation of juvenile hormone titers in female Drosophila melanogaster through mating experiences and host food occupied by eggs and larvae. Zool. Sci. 2017;34:52–57. PubMed
Areiza M, Nouzova M, Rivera-Perez C, Noriega FG. Ecdysis triggering hormone ensures proper timing of juvenile hormone biosynthesis in pharate adult mosquitoes. Insect Biochem. Mol. Biol. 2014;54:98–105. PubMed PMC
Zitnan, D. & Adams, M. E. Insect Endocrinology (ed. Gilbert, L. I.) 253–309 (Elsevier, 2012).
Park, Y., Filippov, V., Gill, S. S. & Adams, M. E. Deletion of the ecdysis-triggering hormone gene leads to lethal ecdysis deficiency. Development129, 493–503 (2002). PubMed
Bilen J, Atallah J, Azanchi R, Levine JD, Riddiford LM. Regulation of onset of female mating and sex pheromone production by juvenile hormone in Drosophila melanogaster. Proc. Natl Acad. Sci. USA. 2013;110:18321–18326. PubMed PMC
Markow TA. Forced matings in natural populations of Drosophila. Am. Nat. 2000;156:100–103. PubMed
Seeley C, Dukas R. Teneral matings in fruit flies: male coercion and female response. Anim. Behav. 2011;81:595–601.
Markow TA. The secret lives of Drosophila flies. Elife. 2015;4:1–9. PubMed PMC
Moshitzky P, et al. Sex-Peptide activates juvenile hormone biosynthesis in the Drosophila melanogaster corpus allatum. Arch. Insect Biochem. Physiol. 1996;32:363–374. PubMed
Pilpel, N., Nezer, I., Applebaum, S. W. & Heifetz, Y. Mating-increases trypsin in female Drosophila hemolymph. Insect Biochem. Mol. Biol. 38, 320–330 (2008). PubMed
Peng J, Zipperlen P, Kubli E. Drosophila sex-peptide stimulates female innate immune system after mating via the Toll and Imd pathways. Curr. Biol. 2005;15:1690–1694. PubMed
Bachtel ND, Hovsepian GA, Nixon DF, Eleftherianos I. Allatostatin C modulates nociception and immunity in Drosophila. Sci. Rep. 2018;8:1–11. PubMed PMC
Reiff T, et al. Endocrine remodelling of the adult intestine sustains reproduction in drosophila. Elife. 2015;4:1–19. PubMed PMC
Anton S, Gadenne C. Effect of juvenile hormone on the central nervous processing of sex pheromone in an insect. Proc. Natl Acad. Sci. USA. 1999;96:5764–5767. PubMed PMC
Shemshedini L, Lanoue M, Wilson TG. Evidence for a juvenile hormone receptor involved in protein synthesis in Drosophila melanogaster. J. Biol. Chem. 1990;265:1913–1918. PubMed
Wilson TG, DeMoor S, Lei J. Juvenile hormone involvement in Drosophila melanogaster male reproduction as suggested by the Methoprene-tolerant27 mutant phenotype. Insect Biochem. Mol. Biol. 2003;33:1167–1175. PubMed
Yu JY, Kanai MI, Demir E, Jefferis GSXE, Dickson BJ. Cellular organization of the neural circuit that drives Drosophila courtship behavior. Curr. Biol. 2010;20:1602–1614. PubMed
von Philipsborn AC, et al. Neuronal control of Drosophila courtship song. Neuron. 2011;69:509–522. PubMed
Hamada FN, et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature. 2008;454:217–220. PubMed PMC
Liu H, Kubli E. Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc. Natl Acad. Sci. USA. 2003;100:9929–9933. PubMed PMC
Pfeiffer BD, et al. Refinement of tools for targeted gene expression in Drosophila. Genetics. 2010;186:735–755. PubMed PMC
Flatt T, Kawecki TJ. Juvenile hormone as a regulator of the trade-off between reproduction and life span in Drosophila melanogaster. Evolution. 2007;61:1980–1991. PubMed
Hampel S, et al. Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat. Methods. 2011;8:253–259. PubMed PMC
Niwa R, et al. Juvenile hormone acid O-methyltransferase in Drosophila melanogaster. Insect Biochem. Mol. Biol. 2008;38:714–720. PubMed
Kwak SJ, et al. Drosophila adiponectin receptor in insulin producing cells regulates glucose and lipid metabolism by controlling insulin secretion. PLoS ONE. 2013;8:2–11. PubMed PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC
Bergot, B. J. Method for quantitative determination of the four known juvenile hormones in insect tissue using gas chromatography-mass spectroscopy. J. Chromatogr. 204, 231–244 (1981).
Rivera-Perez C, Nouzova M, Noriega FG. A quantitative assay for the juvenile hormones and their precursors using fluorescent tags. PLoS ONE. 2012;7:e43784. PubMed PMC
Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin, and juvenile hormone
Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin and juvenile hormone
figshare
10.6084/m9.figshare.18737786