Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin, and juvenile hormone

. 2024 Oct 22 ; 121 (43) : e2411987121. [epub] 20241016

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39413128

Grantová podpora
R37 AG024360 NIA NIH HHS - United States
22-21244S Czech Science Foundation
R01 AG024360 NIA NIH HHS - United States
AG024360 HHS | NIH | National Institute on Aging (NIA)
R01 AG059563 NIA NIH HHS - United States
R21 AI167849 NIAID NIH HHS - United States
AG059563 HHS | NIH | National Institute on Aging (NIA)
AI167849 HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)

Dietary restriction (DR) slows aging in many animals, while in some cases, the sensory signals from diet alone are sufficient to retard or accelerate lifespan. The digestive tract is a candidate location to sense nutrients, where neuropeptides secreted by enteroendocrine cells (EEC) produce systemic signals in response to food. Here, we measure how Drosophila neuropeptide F (NPF) is secreted into adult circulation by EEC and find that specific EEC differentially respond to dietary sugar and yeast. Female lifespan is increased when gut NPF is genetically depleted, and this manipulation is sufficient to blunt the longevity benefit conferred by DR. Depletion of NPF receptors at insulin-producing neurons of the brain also increases female lifespan, consistent with observations where loss of gut NPF decreases neuronal insulin secretion. The longevity conferred by repressing gut NPF and brain NPF receptors is reversed by treating adults with a juvenile hormone (JH) analog. JH is produced by the adult corpora allata, and inhibition of the insulin receptor at this tissue decreases JH titer and extends lifespan in both males and females, while this longevity is restored to wild type by treating adults with a JH analog. Overall, EEC of the gut modulate Drosophila aging through interorgan communication mediated by a gut-brain-corpora allata axis, and insulin produced in the brain impacts lifespan through its control of JH titer. These data suggest that we consider how human incretins and their analogs, which are used to treat obesity and diabetes, may impact aging.

Před aktualizací

PubMed

Zobrazit více v PubMed

Miguel-Aliaga I., Jasper H., Lemaitre B., Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics 210, 357–396 (2018). PubMed PMC

Gribble F. M., Reimann F., Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 15, 226–237 (2019). PubMed

Barton J. R., et al. , Enteroendocrine cell regulation of the gut-brain axis. Front. Neurosci. 17, 1272955 (2023). PubMed PMC

Mendieta-Zeron H., Lopez M., Dieguez C., Gastrointestinal peptides controlling body weight homeostasis. Gen. Comp. Endocrinol. 155, 481–495 (2008). PubMed

Seino Y., Fukushima M., Yabe D., GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig. 1, 8–23 (2010). PubMed PMC

Holst J. J., The physiology of glucagon-like peptide 1. Physiol. Rev. 87, 1409–1439 (2007). PubMed

Andersen A., Lund A., Knop F. K., Vilsboll T., Glucagon-like peptide 1 in health and disease. Nat. Rev. Endocrinol. 14, 390–403 (2018). PubMed

Spector R., A revolution in the treatment of obesity. Am. J. Med. 137, 925–928 (2024), 10.1016/j.amjmed.2024.05.023. PubMed DOI

Wegener C., Veenstra J. A., Chemical identity, function and regulation of enteroendocrine peptides in insects. Curr. Opin. Insect. Sci. 11, 8–13 (2015). PubMed

Veenstra J. A., Agricola H. J., Sellami A., Regulatory peptides in fruit fly midgut. Cell Tissue Res. 334, 499–516 (2008). PubMed

Hung R. J., et al. , A cell atlas of the adult Drosophila midgut. Proc. Natl. Acad. Sci. U.S.A. 117, 1514–1523 (2020). PubMed PMC

Reiher W., et al. , Peptidomics and peptide hormone processing in the Drosophila midgut. J. Proteome Res. 10, 1881–1892 (2011). PubMed

Verhaert P., et al. , Dual location of neuropeptide F in the central nervous system and midgut of the fruitfly Drosophila melanogaster. Belg. J. Zool. 123, 86–87 (1993).

Nässel D. R., Winther A. M., Drosophila neuropeptides in regulation of physiology and behavior. Prog. Neurobiol. 92, 42–104 (2010). PubMed

Amcheslavsky A., et al. , Enteroendocrine cells support intestinal stem-cell-mediated homeostasis in Drosophila. Cell Rep. 9, 32–39 (2014). PubMed PMC

Scopelliti A., et al. , Local control of intestinal stem cell homeostasis by enteroendocrine cells in the adult Drosophila midgut. Curr. Biol. 24, 1199–1211 (2014). PubMed PMC

Talsma A. D., et al. , Remote control of renal physiology by the intestinal neuropeptide pigment-dispersing factor in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 109, 12177–12182 (2012). PubMed PMC

Okamoto N., Watanabe A., Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly (Austin) 16, 152–176 (2022). PubMed PMC

Wahlestedt C., Reis D. J., Neuropeptide Y-related peptides and their receptors—Are the receptors potential therapeutic drug targets? Annu. Rev. Pharmacol. Toxicol. 33, 309–352 (1993). PubMed

Brown M. R., et al. , Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 20, 1035–1042 (1999). PubMed

Li X. J., Wu Y. N., North R. A., Forte M., Cloning, functional expression, and developmental regulation of a neuropeptide Y receptor from Drosophila melanogaster. J. Biol. Chem. 267, 9–12 (1992). PubMed

Ameku T., Niwa R., Mating-induced increase in germline stem cells via the neuroendocrine system in female Drosophila. PLoS Genet. 12, e1006123 (2016). PubMed PMC

Malita A., et al. , A gut-derived hormone suppresses sugar appetite and regulates food choice in Drosophila. Nat. Metab. 4, 1532–1550 (2022). PubMed PMC

Yoshinari Y., et al. , The sugar-responsive enteroendocrine neuropeptide F regulates lipid metabolism through glucagon-like and insulin-like hormones in Drosophila melanogaster. Nat. Commun. 12, 4818 (2021). PubMed PMC

Wen T., Parrish C. A., Xu D., Wu Q., Shen P., Drosophila neuropeptide F and its receptor, NPFR1, define a signaling pathway that acutely modulates alcohol sensitivity. Proc. Natl. Acad. Sci. U.S.A. 102, 2141–2146 (2005). PubMed PMC

Krause S. A., Overend G., Dow J. A. T., Leader D. P., FlyAtlas 2 in 2022: Enhancements to the Drosophila melanogaster expression atlas. Nucleic Acids Res. 50, D1010–D1015 (2022). PubMed PMC

Mathew R., Pal Bhadra M., Bhadra U., Insulin/insulin-like growth factor-1 signalling (IIS) based regulation of lifespan across species. Biogerontology 18, 35–53 (2017). PubMed

Tatar M., et al. , A mutant Drosophila insulin receptor homolog that extends lifespan and impairs neuroendocrine function. Science 292, 107–110 (2001). PubMed

Broughton S. J., et al. , DILP-producing median neurosecretory cells in the Drosophila brain mediate the response of lifespan to nutrition. Aging Cell 9, 336–346 (2010). PubMed PMC

Yamamoto R., Palmer M., Koski H., Curtis-Joseph N., Tatar M., Aging modulated by the Drosophila insulin receptor through distinct structure-defined mechanisms. Genetics 217, iyaa037 (2021). PubMed PMC

Riddiford L. M., Cellular and molecular actions of juvenile hormone. I. General considerations and premetamorphic actions. Adv. Insect Physiol. 24, 213–274 (1994).

Flatt T., Tu M. P., Tatar M., Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays 27, 999–1010 (2005). PubMed

Gao J., et al. , Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion. Nat. Commun. 15, 3514 (2024). PubMed PMC

Droujinine I. A., et al. , Proteomics of protein trafficking by in vivo tissue-specific labeling. Nat. Commun. 12, 2382 (2021). PubMed PMC

Chung B. Y., et al. , Drosophila Neuropeptide F signaling independently regulates feeding and sleep-wake behavior. Cell Rep. 19, 2441–2450 (2017). PubMed PMC

Masuyama K., Zhang Y., Rao Y., Wang J. W., Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J. Neurogenet. 26, 89–102 (2012). PubMed PMC

Sidhu S. S., Thompson D. G., Warhurst G., Case R. M., Benson R. S., Fatty acid-induced cholecystokinin secretion and changes in intracellular Ca2+ in two enteroendocrine cell lines, STC-1 and GLUTag J Physiol 528, 165–176 (2000). PubMed PMC

Ameku T., et al. , Midgut-derived neuropeptide F controls germline stem cell proliferation in a mating-dependent manner. PLoS Biol. 16, e2005004 (2018). PubMed PMC

Yamamoto R., Bai H., Dolezal A. G., Amdam G., Tatar M., Juvenile hormone regulation of Drosophila aging. BMC Biol. 11, 85 (2013). PubMed PMC

Abdou M. A., et al. , Drosophila Met and Gce are partially redundant in transducing juvenile hormone action. Insect Biochem. Mol. Biol. 41, 938–945 (2011). PubMed

Wang C., Zhang J., Tobe S. S., Bendena W. G., Defining the contribution of select neuropeptides and their receptors in regulating sesquiterpenoid biosynthesis by Drosophila melanogaster ring gland/corpus allatum through RNAi analysis. Gen. Comp. Endocrinol. 176, 347–353 (2012). PubMed

Belgacem Y. H., Martin J. R., Hmgcr in the corpus allatum controls sexual dimorphism of locomotor activity and body size via the insulin pathway in Drosophila. PLoS ONE 2, e187 (2007). PubMed PMC

Rivera-Pérez C., Clifton M. E., Noriega F. G., Jindra M., “Juvenile hormone regulation and action” in Advances in Invertebrate (Neuro)Endocrinology: A Collection of Reviews in the Post-Genomic Era, Saleuddin S., Lange A. B., Orchard I., Eds. (Apple Academic Press, 2020), p. 76.

Bendena W. G., Hui J. H. L., Chin-Sang I., Tobe S. S., Neuropeptide and microRNA regulators of juvenile hormone production. Gen. Comp. Endocrinol. 295, 113507 (2020). PubMed

Zhang C., et al. , The neuropeptide allatostatin C from clock-associated DN1p neurons generates the circadian rhythm for oogenesis. Proc. Natl. Acad. Sci. U.S.A. 118, e2016878118 (2021). PubMed PMC

Meiselman M., et al. , Endocrine network essential for reproductive success in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 114, E3849–E3858 (2017). PubMed PMC

Zhang C., Kim A. J., Rivera-Perez C., Noriega F. G., Kim Y. J., The insect somatostatin pathway gates vitellogenesis progression during reproductive maturation and the post-mating response. Nat. Commun. 13, 969 (2022). PubMed PMC

Lee S. S., Adams M. E., Regulation of Drosophila long-term courtship memory by Ecdysis Triggering Hormone. Front. Neurosci. 15, 670322 (2021), 10.3389/fnins.2021.670322. PubMed DOI PMC

Kurogi Y., et al. , Female reproductive dormancy in Drosophila is regulated by DH31-producing neurons projecting into the corpus allatum. Development 150, dev201186 (2023), 10.1242/dev.201186. PubMed DOI PMC

Lee K. P., et al. , Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc. Natl. Acad. Sci. U.S.A. 105, 2498–2503 (2008). PubMed PMC

Tatar M., Post S., Yu K., Nutrient control of Drosophila longevity. Trends Endocrinol. Metab. 25, 509–517 (2014). PubMed PMC

Gendron C. M., et al. , Drosophila lifespan and physiology are modulated by sexual perception and reward. Science 343, 544–548 (2014). PubMed PMC

Tu M. P., Yin C. M., Tatar M., Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen. Comp. Endocrinol. 142, 347–356 (2005). PubMed

Bownes M., The roles for juvenile hormone, ecdysone and the ovary in the control of Drosophila vitellogenesis. J. Insect Physiol. 35, 409–413 (1989).

Reiff T., et al. , Endocrine remodeling of the adult intestine sustains reproduction in Drosophila. eLife 4, e06930 (2015). PubMed PMC

Nässel D. R., Kubrak O. I., Liu Y., Luo J., Lushchak O. V., Factors that regulate insulin producing cells and their output in Drosophila. Front. Physiol. 17, 252 (2013). PubMed PMC

Ahmed S. M. H., et al. , Fitness trade-offs incurred by ovary-to-gut steroid signaling in Drosophila. Nature 584, 415–419 (2020). PubMed PMC

Tatar M., Yin C.-M., Slow aging during insect reproductive diapause: Why butterflies, grasshoppers and flies are like worms. Exp. Gerontol. 336, 723–738 (2001). PubMed

Kim H. S., et al. , Early-adulthood spike in protein translation drives aging via juvenile hormone/germline signaling. Nat. Commun. 14, 5021 (2023). PubMed PMC

Flatt T., Moroz L. L., Tatar M., Heyland A., Comparing thyroid and insect hormone signaling. Integr. Comp. Biol. 46, 777–794 (2006). PubMed

Holzer P., Reichmann F., Farzi A., Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut–brain axis. Neuropeptides 46, 261–274 (2012). PubMed PMC

Engelstoft M. S., Egerod K. L., Lund M. L., Schwartz T. W., Enteroendocrine cell types revisited. Curr. Opin. Pharmacol. 13, 912–921 (2013). PubMed

Botelho M., Cavadas C., Neuropeptide Y: An anti-aging player? Trends Neurosci. 38, 701–711 (2015). PubMed

Tovar S. A., et al. , Regulation of peptide YY levels by age, hormonal, and nutritional status. Obes. Res. 12, 1944–1950 (2004). PubMed

van Heemst D., The ageing thyroid: Implications for longevity and patient care. Nat. Rev. Endocrinol. 20, 5–15 (2024). PubMed

Boey D., Sainsbury A., Herzog H., The role of peptide YY in regulating glucose homeostasis. Peptides 28, 390–395 (2007). PubMed

Boey D., et al. , PYY transgenic mice are protected against diet-induced and genetic obesity. Neuropeptides 42, 19–30 (2008). PubMed

Karpac J., Hull-Thompson J., Falleur M., Jasper H., JNK signaling in insulin-producing cells is required for adaptive responses to stress in Drosophila. Aging Cell 8, 288–295 (2009). PubMed PMC

Roman G., Endo K., Zong L., Davis R. L., P{Switch}, a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 98, 12602–12607 (2001). PubMed PMC

Ramirez C. E., Nouzová M., Michalkova V., Fernandez-Lima F., Noriega F. G., Common structural features facilitate the simultaneous identification and quantification of the five most common juvenile hormones by liquid chromatography-tandem mass spectrometry. Insect Biochem. Mol. Biol. 116, 103287 (2020). PubMed PMC

Chen J., Data from “Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin and juvenile hormone”. Brown University Open Data Collection. Brown Digital Repository. Brown University Library. 10.26300/5909-pk25. Deposited 18 August 2024. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...