Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin, and juvenile hormone
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
R37 AG024360
NIA NIH HHS - United States
22-21244S
Czech Science Foundation
R01 AG024360
NIA NIH HHS - United States
AG024360
HHS | NIH | National Institute on Aging (NIA)
R01 AG059563
NIA NIH HHS - United States
R21 AI167849
NIAID NIH HHS - United States
AG059563
HHS | NIH | National Institute on Aging (NIA)
AI167849
HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
PubMed
39413128
PubMed Central
PMC11513968
DOI
10.1073/pnas.2411987121
Knihovny.cz E-resources
- Keywords
- aging, incretin, insulin, interorgan communication, juvenile hormone,
- MeSH
- Longevity physiology MeSH
- Drosophila melanogaster metabolism MeSH
- Enteroendocrine Cells metabolism MeSH
- Insulin * metabolism MeSH
- Juvenile Hormones * metabolism MeSH
- Brain metabolism MeSH
- Neurons metabolism MeSH
- Neuropeptides * metabolism MeSH
- Brain-Gut Axis * physiology MeSH
- Drosophila Proteins * metabolism genetics MeSH
- Aging metabolism physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Insulin * MeSH
- Juvenile Hormones * MeSH
- neuropeptide F, Drosophila MeSH Browser
- Neuropeptides * MeSH
- Drosophila Proteins * MeSH
Dietary restriction (DR) slows aging in many animals, while in some cases, the sensory signals from diet alone are sufficient to retard or accelerate lifespan. The digestive tract is a candidate location to sense nutrients, where neuropeptides secreted by enteroendocrine cells (EEC) produce systemic signals in response to food. Here, we measure how Drosophila neuropeptide F (NPF) is secreted into adult circulation by EEC and find that specific EEC differentially respond to dietary sugar and yeast. Female lifespan is increased when gut NPF is genetically depleted, and this manipulation is sufficient to blunt the longevity benefit conferred by DR. Depletion of NPF receptors at insulin-producing neurons of the brain also increases female lifespan, consistent with observations where loss of gut NPF decreases neuronal insulin secretion. The longevity conferred by repressing gut NPF and brain NPF receptors is reversed by treating adults with a juvenile hormone (JH) analog. JH is produced by the adult corpora allata, and inhibition of the insulin receptor at this tissue decreases JH titer and extends lifespan in both males and females, while this longevity is restored to wild type by treating adults with a JH analog. Overall, EEC of the gut modulate Drosophila aging through interorgan communication mediated by a gut-brain-corpora allata axis, and insulin produced in the brain impacts lifespan through its control of JH titer. These data suggest that we consider how human incretins and their analogs, which are used to treat obesity and diabetes, may impact aging.
Department of Ecology Evolution and Organismal Biology Brown University Providence RI 02912
Department of Parasitology University of South Bohemia České Budějovice 37005 Czech Republic
See more in PubMed
Miguel-Aliaga I., Jasper H., Lemaitre B., Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics 210, 357–396 (2018). PubMed PMC
Gribble F. M., Reimann F., Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 15, 226–237 (2019). PubMed
Barton J. R., et al. , Enteroendocrine cell regulation of the gut-brain axis. Front. Neurosci. 17, 1272955 (2023). PubMed PMC
Mendieta-Zeron H., Lopez M., Dieguez C., Gastrointestinal peptides controlling body weight homeostasis. Gen. Comp. Endocrinol. 155, 481–495 (2008). PubMed
Seino Y., Fukushima M., Yabe D., GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig. 1, 8–23 (2010). PubMed PMC
Holst J. J., The physiology of glucagon-like peptide 1. Physiol. Rev. 87, 1409–1439 (2007). PubMed
Andersen A., Lund A., Knop F. K., Vilsboll T., Glucagon-like peptide 1 in health and disease. Nat. Rev. Endocrinol. 14, 390–403 (2018). PubMed
Spector R., A revolution in the treatment of obesity. Am. J. Med. 137, 925–928 (2024), 10.1016/j.amjmed.2024.05.023. PubMed DOI
Wegener C., Veenstra J. A., Chemical identity, function and regulation of enteroendocrine peptides in insects. Curr. Opin. Insect. Sci. 11, 8–13 (2015). PubMed
Veenstra J. A., Agricola H. J., Sellami A., Regulatory peptides in fruit fly midgut. Cell Tissue Res. 334, 499–516 (2008). PubMed
Hung R. J., et al. , A cell atlas of the adult Drosophila midgut. Proc. Natl. Acad. Sci. U.S.A. 117, 1514–1523 (2020). PubMed PMC
Reiher W., et al. , Peptidomics and peptide hormone processing in the Drosophila midgut. J. Proteome Res. 10, 1881–1892 (2011). PubMed
Verhaert P., et al. , Dual location of neuropeptide F in the central nervous system and midgut of the fruitfly Drosophila melanogaster. Belg. J. Zool. 123, 86–87 (1993).
Nässel D. R., Winther A. M., Drosophila neuropeptides in regulation of physiology and behavior. Prog. Neurobiol. 92, 42–104 (2010). PubMed
Amcheslavsky A., et al. , Enteroendocrine cells support intestinal stem-cell-mediated homeostasis in Drosophila. Cell Rep. 9, 32–39 (2014). PubMed PMC
Scopelliti A., et al. , Local control of intestinal stem cell homeostasis by enteroendocrine cells in the adult Drosophila midgut. Curr. Biol. 24, 1199–1211 (2014). PubMed PMC
Talsma A. D., et al. , Remote control of renal physiology by the intestinal neuropeptide pigment-dispersing factor in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 109, 12177–12182 (2012). PubMed PMC
Okamoto N., Watanabe A., Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly (Austin) 16, 152–176 (2022). PubMed PMC
Wahlestedt C., Reis D. J., Neuropeptide Y-related peptides and their receptors—Are the receptors potential therapeutic drug targets? Annu. Rev. Pharmacol. Toxicol. 33, 309–352 (1993). PubMed
Brown M. R., et al. , Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 20, 1035–1042 (1999). PubMed
Li X. J., Wu Y. N., North R. A., Forte M., Cloning, functional expression, and developmental regulation of a neuropeptide Y receptor from Drosophila melanogaster. J. Biol. Chem. 267, 9–12 (1992). PubMed
Ameku T., Niwa R., Mating-induced increase in germline stem cells via the neuroendocrine system in female Drosophila. PLoS Genet. 12, e1006123 (2016). PubMed PMC
Malita A., et al. , A gut-derived hormone suppresses sugar appetite and regulates food choice in Drosophila. Nat. Metab. 4, 1532–1550 (2022). PubMed PMC
Yoshinari Y., et al. , The sugar-responsive enteroendocrine neuropeptide F regulates lipid metabolism through glucagon-like and insulin-like hormones in Drosophila melanogaster. Nat. Commun. 12, 4818 (2021). PubMed PMC
Wen T., Parrish C. A., Xu D., Wu Q., Shen P., Drosophila neuropeptide F and its receptor, NPFR1, define a signaling pathway that acutely modulates alcohol sensitivity. Proc. Natl. Acad. Sci. U.S.A. 102, 2141–2146 (2005). PubMed PMC
Krause S. A., Overend G., Dow J. A. T., Leader D. P., FlyAtlas 2 in 2022: Enhancements to the Drosophila melanogaster expression atlas. Nucleic Acids Res. 50, D1010–D1015 (2022). PubMed PMC
Mathew R., Pal Bhadra M., Bhadra U., Insulin/insulin-like growth factor-1 signalling (IIS) based regulation of lifespan across species. Biogerontology 18, 35–53 (2017). PubMed
Tatar M., et al. , A mutant Drosophila insulin receptor homolog that extends lifespan and impairs neuroendocrine function. Science 292, 107–110 (2001). PubMed
Broughton S. J., et al. , DILP-producing median neurosecretory cells in the Drosophila brain mediate the response of lifespan to nutrition. Aging Cell 9, 336–346 (2010). PubMed PMC
Yamamoto R., Palmer M., Koski H., Curtis-Joseph N., Tatar M., Aging modulated by the Drosophila insulin receptor through distinct structure-defined mechanisms. Genetics 217, iyaa037 (2021). PubMed PMC
Riddiford L. M., Cellular and molecular actions of juvenile hormone. I. General considerations and premetamorphic actions. Adv. Insect Physiol. 24, 213–274 (1994).
Flatt T., Tu M. P., Tatar M., Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays 27, 999–1010 (2005). PubMed
Gao J., et al. , Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion. Nat. Commun. 15, 3514 (2024). PubMed PMC
Droujinine I. A., et al. , Proteomics of protein trafficking by in vivo tissue-specific labeling. Nat. Commun. 12, 2382 (2021). PubMed PMC
Chung B. Y., et al. , Drosophila Neuropeptide F signaling independently regulates feeding and sleep-wake behavior. Cell Rep. 19, 2441–2450 (2017). PubMed PMC
Masuyama K., Zhang Y., Rao Y., Wang J. W., Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J. Neurogenet. 26, 89–102 (2012). PubMed PMC
Sidhu S. S., Thompson D. G., Warhurst G., Case R. M., Benson R. S., Fatty acid-induced cholecystokinin secretion and changes in intracellular Ca2+ in two enteroendocrine cell lines, STC-1 and GLUTag J Physiol 528, 165–176 (2000). PubMed PMC
Ameku T., et al. , Midgut-derived neuropeptide F controls germline stem cell proliferation in a mating-dependent manner. PLoS Biol. 16, e2005004 (2018). PubMed PMC
Yamamoto R., Bai H., Dolezal A. G., Amdam G., Tatar M., Juvenile hormone regulation of Drosophila aging. BMC Biol. 11, 85 (2013). PubMed PMC
Abdou M. A., et al. , Drosophila Met and Gce are partially redundant in transducing juvenile hormone action. Insect Biochem. Mol. Biol. 41, 938–945 (2011). PubMed
Wang C., Zhang J., Tobe S. S., Bendena W. G., Defining the contribution of select neuropeptides and their receptors in regulating sesquiterpenoid biosynthesis by Drosophila melanogaster ring gland/corpus allatum through RNAi analysis. Gen. Comp. Endocrinol. 176, 347–353 (2012). PubMed
Belgacem Y. H., Martin J. R., Hmgcr in the corpus allatum controls sexual dimorphism of locomotor activity and body size via the insulin pathway in Drosophila. PLoS ONE 2, e187 (2007). PubMed PMC
Rivera-Pérez C., Clifton M. E., Noriega F. G., Jindra M., “Juvenile hormone regulation and action” in Advances in Invertebrate (Neuro)Endocrinology: A Collection of Reviews in the Post-Genomic Era, Saleuddin S., Lange A. B., Orchard I., Eds. (Apple Academic Press, 2020), p. 76.
Bendena W. G., Hui J. H. L., Chin-Sang I., Tobe S. S., Neuropeptide and microRNA regulators of juvenile hormone production. Gen. Comp. Endocrinol. 295, 113507 (2020). PubMed
Zhang C., et al. , The neuropeptide allatostatin C from clock-associated DN1p neurons generates the circadian rhythm for oogenesis. Proc. Natl. Acad. Sci. U.S.A. 118, e2016878118 (2021). PubMed PMC
Meiselman M., et al. , Endocrine network essential for reproductive success in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 114, E3849–E3858 (2017). PubMed PMC
Zhang C., Kim A. J., Rivera-Perez C., Noriega F. G., Kim Y. J., The insect somatostatin pathway gates vitellogenesis progression during reproductive maturation and the post-mating response. Nat. Commun. 13, 969 (2022). PubMed PMC
Lee S. S., Adams M. E., Regulation of Drosophila long-term courtship memory by Ecdysis Triggering Hormone. Front. Neurosci. 15, 670322 (2021), 10.3389/fnins.2021.670322. PubMed DOI PMC
Kurogi Y., et al. , Female reproductive dormancy in Drosophila is regulated by DH31-producing neurons projecting into the corpus allatum. Development 150, dev201186 (2023), 10.1242/dev.201186. PubMed DOI PMC
Lee K. P., et al. , Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc. Natl. Acad. Sci. U.S.A. 105, 2498–2503 (2008). PubMed PMC
Tatar M., Post S., Yu K., Nutrient control of Drosophila longevity. Trends Endocrinol. Metab. 25, 509–517 (2014). PubMed PMC
Gendron C. M., et al. , Drosophila lifespan and physiology are modulated by sexual perception and reward. Science 343, 544–548 (2014). PubMed PMC
Tu M. P., Yin C. M., Tatar M., Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen. Comp. Endocrinol. 142, 347–356 (2005). PubMed
Bownes M., The roles for juvenile hormone, ecdysone and the ovary in the control of Drosophila vitellogenesis. J. Insect Physiol. 35, 409–413 (1989).
Reiff T., et al. , Endocrine remodeling of the adult intestine sustains reproduction in Drosophila. eLife 4, e06930 (2015). PubMed PMC
Nässel D. R., Kubrak O. I., Liu Y., Luo J., Lushchak O. V., Factors that regulate insulin producing cells and their output in Drosophila. Front. Physiol. 17, 252 (2013). PubMed PMC
Ahmed S. M. H., et al. , Fitness trade-offs incurred by ovary-to-gut steroid signaling in Drosophila. Nature 584, 415–419 (2020). PubMed PMC
Tatar M., Yin C.-M., Slow aging during insect reproductive diapause: Why butterflies, grasshoppers and flies are like worms. Exp. Gerontol. 336, 723–738 (2001). PubMed
Kim H. S., et al. , Early-adulthood spike in protein translation drives aging via juvenile hormone/germline signaling. Nat. Commun. 14, 5021 (2023). PubMed PMC
Flatt T., Moroz L. L., Tatar M., Heyland A., Comparing thyroid and insect hormone signaling. Integr. Comp. Biol. 46, 777–794 (2006). PubMed
Holzer P., Reichmann F., Farzi A., Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut–brain axis. Neuropeptides 46, 261–274 (2012). PubMed PMC
Engelstoft M. S., Egerod K. L., Lund M. L., Schwartz T. W., Enteroendocrine cell types revisited. Curr. Opin. Pharmacol. 13, 912–921 (2013). PubMed
Botelho M., Cavadas C., Neuropeptide Y: An anti-aging player? Trends Neurosci. 38, 701–711 (2015). PubMed
Tovar S. A., et al. , Regulation of peptide YY levels by age, hormonal, and nutritional status. Obes. Res. 12, 1944–1950 (2004). PubMed
van Heemst D., The ageing thyroid: Implications for longevity and patient care. Nat. Rev. Endocrinol. 20, 5–15 (2024). PubMed
Boey D., Sainsbury A., Herzog H., The role of peptide YY in regulating glucose homeostasis. Peptides 28, 390–395 (2007). PubMed
Boey D., et al. , PYY transgenic mice are protected against diet-induced and genetic obesity. Neuropeptides 42, 19–30 (2008). PubMed
Karpac J., Hull-Thompson J., Falleur M., Jasper H., JNK signaling in insulin-producing cells is required for adaptive responses to stress in Drosophila. Aging Cell 8, 288–295 (2009). PubMed PMC
Roman G., Endo K., Zong L., Davis R. L., P{Switch}, a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 98, 12602–12607 (2001). PubMed PMC
Ramirez C. E., Nouzová M., Michalkova V., Fernandez-Lima F., Noriega F. G., Common structural features facilitate the simultaneous identification and quantification of the five most common juvenile hormones by liquid chromatography-tandem mass spectrometry. Insect Biochem. Mol. Biol. 116, 103287 (2020). PubMed PMC
Chen J., Data from “Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin and juvenile hormone”. Brown University Open Data Collection. Brown Digital Repository. Brown University Library. 10.26300/5909-pk25. Deposited 18 August 2024. PubMed DOI PMC
Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin, and juvenile hormone