Female reproductive dormancy in Drosophila is regulated by DH31-producing neurons projecting into the corpus allatum
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R21 AI153689
NIAID NIH HHS - United States
R21 AI167849
NIAID NIH HHS - United States
PubMed
37218457
PubMed Central
PMC10233717
DOI
10.1242/dev.201186
PII: 310536
Knihovny.cz E-zdroje
- Klíčová slova
- Drosophila, Corpus allatum, Diapause, Diuretic hormone 31, Juvenile hormone, Reproductive dormancy,
- MeSH
- corpora allata MeSH
- Drosophila melanogaster * genetika fyziologie MeSH
- hmyzí hormony * genetika fyziologie MeSH
- juvenilní hormony MeSH
- neurony MeSH
- proteiny Drosophily genetika fyziologie MeSH
- rozmnožování MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Dh31 protein, Drosophila MeSH Prohlížeč
- hmyzí hormony * MeSH
- juvenilní hormony MeSH
- proteiny Drosophily MeSH
Female insects can enter reproductive diapause, a state of suspended egg development, to conserve energy under adverse environments. In many insects, including the fruit fly, Drosophila melanogaster, reproductive diapause, also frequently called reproductive dormancy, is induced under low-temperature and short-day conditions by the downregulation of juvenile hormone (JH) biosynthesis in the corpus allatum (CA). In this study, we demonstrate that neuropeptide Diuretic hormone 31 (DH31) produced by brain neurons that project into the CA plays an essential role in regulating reproductive dormancy by suppressing JH biosynthesis in adult D. melanogaster. The CA expresses the gene encoding the DH31 receptor, which is required for DH31-triggered elevation of intracellular cAMP in the CA. Knocking down Dh31 in these CA-projecting neurons or DH31 receptor in the CA suppresses the decrease of JH titer, normally observed under dormancy-inducing conditions, leading to abnormal yolk accumulation in the ovaries. Our findings provide the first molecular genetic evidence demonstrating that CA-projecting peptidergic neurons play an essential role in regulating reproductive dormancy by suppressing JH biosynthesis.
Department of Parasitology University of South Bohemia České Budějovice 37005 Czech Republic
Graduate School of Life Sciences Tohoku University Katahira 2 1 1 Sendai Miyagi 980 8577 Japan
Zobrazit více v PubMed
Abdelsalam, S., Uemura, H., Umezaki, Y., Saifullah, A. S. M., Shimohigashi, M. and Tomioka, K. (2008). Characterization of PDF-immunoreactive neurons in the optic lobe and cerebral lobe of the cricket, PubMed DOI
Abrieux, A., Xue, Y., Cai, Y., Lewald, K. M., Nguyen, H. N., Zhang, Y. and Chiu, J. C. (2020). EYES ABSENT and TIMELESS integrate photoperiodic and temperature cues to regulate seasonal physiology in PubMed DOI PMC
Ádám, G., Perrimon, N. and Noselli, S. (2003). The retinoic-like juvenile hormone controls the looping of left-right asymmetric organs in PubMed DOI
Andreatta, G., Kyriacou, C. P., Flatt, T. and Costa, R. (2018). Aminergic signaling controls ovarian dormancy in PubMed DOI PMC
Benguettat, O., Jneid, R., Soltys, J., Loudhaief, R., Brun-Barale, A., Osman, D. and Gallet, A. (2018). The DH31/CGRP enteroendocrine peptide triggers intestinal contractions favoring the elimination of opportunistic bacteria. PubMed DOI PMC
Bownes, M. (1989). The roles of juvenile hormone, ecdysone and the ovary in the control of DOI
Bownes, M. and Rembold, H. (1987). The titre of juvenile hormone during the pupal and adult stages of the life cycle of PubMed DOI
Cai, W., Kim, C.-H., Go, H.-J., Egertová, M., Zampronio, C. G., Jones, A. M., Park, N. G. and Elphick, M. R. (2018). Biochemical, anatomical, and pharmacological characterization of Calcitonin-type neuropeptides in Starfish: Discovery of an ancient role as muscle relaxants. PubMed DOI PMC
Clements, J., Goina, C., Kazimiers, A., Otsuna, H., Svirskas, R. and Rokicki, K. (2020). NeuronBridge codebase. https://janelia.figshare.com/articles/software/NeuronBridge_Codebase/12159378
Coast, G. M., Webster, S. G., Schegg, K. M., Tobe, S. S. and Schooley, D. A. (2001). The PubMed DOI
De Wilde, J. and de Boer, J. A. (1969). Humoral and nervous pathways in photoperiodic induction of diapause in DOI
Deng, B., Li, Q., Liu, X., Cao, Y., Li, B., Qian, Y., Xu, R., Mao, R., Zhou, E., Zhang, W.et al. (2019). Chemoconnectomics: mapping chemical transmission in PubMed DOI
Denlinger, D. L. (2002). Regulation of Diapause. PubMed DOI
Denlinger, D. L. (2008). Why study diapause? DOI
Denlinger, D. L. (2022).
Denlinger, D. L., Yocum, G. D. and Rinehart, J. P. (2012). Hormonal Control of Diapause. In
Feinberg, E. H., VanHoven, M. K., Bendesky, A., Wang, G., Fetter, R. D., Shen, K. and Bargmann, C. I. (2008). GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. PubMed DOI
Flatt, T., Tu, M.-P. and Tatar, M. (2005). Hormonal pleiotropy and the juvenile hormone regulation of PubMed DOI
Flatt, T., Heyland, A., Rus, F., Porpiglia, E., Sherlock, C., Yamamoto, R., Garbuzov, A., Palli, S. R., Tatar, M. and Silverman, N. (2008). Hormonal regulation of the humoral innate immune response in PubMed DOI PMC
Furuya, K., Milchak, R. J., Schegg, K. M., Zhang, J., Tobe, S. S., Coast, G. M. and Schooley, D. A. (2000). Cockroach diuretic hormones: characterization of a calcitonin-like peptide in insects. PubMed DOI PMC
Gao, X. J., Riabinina, O., Li, J., Potter, C. J., Clandinin, T. R. and Luo, L. (2015). A transcriptional reporter of intracellular Ca2+ in PubMed DOI PMC
Goda, T., Tang, X., Umezaki, Y., Chu, M. L., Kunst, M., Nitabach, M. N. and Hamada, F. N. (2016). PubMed DOI PMC
Goda, T., Doi, M., Umezaki, Y., Murai, I., Shimatani, H., Chu, M. L., Nguyen, V. H., Okamura, H. and Hamada, F. N. (2018). Calcitonin receptors are ancient modulators for rhythms of preferential temperature in insects and body temperature in mammals. PubMed DOI PMC
Goda, T., Umezaki, Y., Alwattari, F., Seo, H. W. and Hamada, F. N. (2019). Neuropeptides PDF and DH31 hierarchically regulate free-running rhythmicity in PubMed DOI PMC
Groth, A. C., Fish, M., Nusse, R. and Calos, M. P. (2004). Construction of transgenic PubMed DOI PMC
Hamada, F. N., Rosenzweig, M., Kang, K., Pulver, S. R., Ghezzi, A., Jegla, T. J. and Garrity, P. A. (2008). An internal thermal sensor controlling temperature preference in PubMed DOI PMC
Hamanaka, Y., Yasuyama, K., Numata, H. and Shiga, S. (2005). Synaptic connections between pigment-dispersing factor-immunoreactive neurons and neurons in the pars lateralis of the blow fly PubMed DOI
Hamanaka, Y., Tanaka, S., Numata, H. and Shiga, S. (2007). Peptide immunocytochemistry of neurons projecting to the retrocerebral complex in the blow fly, PubMed DOI
Hamanaka, Y., Tanaka, S., Numata, H. and Shiga, S. (2009). Morphological characterization of neurons projecting to the ring gland in the larval blow fly, PubMed DOI
Hand, S. C., Denlinger, D. L., Podrabsky, J. E. and Roy, R. (2016). Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish. PubMed DOI PMC
Harada, K., Ito, M., Wang, X., Tanaka, M., Wongso, D., Konno, A., Hirai, H., Hirase, H., Tsuboi, T. and Kitaguchi, T. (2017). Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging. PubMed DOI PMC
Hasebe, M. and Shiga, S. (2021a). Oviposition-promoting pars intercerebralis neurons show PubMed DOI PMC
Hasebe, M. and Shiga, S. (2021b). Photoperiodic response in the pars intercerebralis neurons, including Plast-MIP neurons, in the brown-winged green bug, PubMed DOI
Hasegawa, T., Hasebe, M. and Shiga, S. (2020). Immunohistochemical and direct mass spectral analyses of PubMed DOI
Head, L. M., Tang, X., Hayley, S. E., Goda, T., Umezaki, Y., Chang, E. C., Leslie, J. R., Fujiwara, M., Garrity, P. A. and Hamada, F. N. (2015). The influence of light on temperature preference in PubMed DOI PMC
Helfrich-Förster, C. (1995). The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of PubMed DOI PMC
Hodková, M. (1976). Nervous inhibition of corpora allata by photoperiod in PubMed DOI
Hutfilz, C. (2022). Endocrine regulation of lifespan in insect diapause. PubMed DOI PMC
Imura, E., Shimada-Niwa, Y., Nishimura, T., Hückesfeld, S., Schlegel, P., Ohhara, Y., Kondo, S., Tanimoto, H., Cardona, A., Pankratz, M. J.et al. (2020). The Corazonin-PTTH Neuronal Axis Controls Systemic Body Growth by Regulating Basal Ecdysteroid Biosynthesis in PubMed DOI
Ito, K., Suzuki, K., Estes, P., Ramaswami, M., Yamamoto, D. and Strausfeld, N. J. (1998). The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in PubMed DOI PMC
Jenett, A., Rubin, G. M., Ngo, T.-T. B., Shepherd, D., Murphy, C., Dionne, H., Pfeiffer, B. D., Cavallaro, A., Hall, D., Jeter, J.et al. (2012). A GAL4-driver line resource for PubMed DOI PMC
Johard, H. A. D., Yoishii, T., Dircksen, H., Cusumano, P., Rouyer, F., Helfrich-Förster, C. and Nässel, D. R. (2009). Peptidergic clock neurons in PubMed DOI
Johnson, E. C., Shafer, O. T., Trigg, J. S., Park, J., Schooley, D. A., Dow, J. A. and Taghert, P. H. (2005). A novel diuretic hormone receptor in PubMed DOI
Kaneko, H., Head, L. M., Ling, J., Tang, X., Liu, Y., Hardin, P. E., Emery, P. and Hamada, F. N. (2012). Circadian rhythm of temperature preference and its neural control in PubMed DOI PMC
Khan, M. A., Romberg-Privee, H. M. and Koopmanschap, A. B. (1986). Location of allatostatic centers in the pars lateralis regions of the brain of the Colorado potato beetle. DOI
King, R. C. (1970). The meiotic behavior of the PubMed DOI
Kondo, S., Takahashi, T., Yamagata, N., Imanishi, Y., Katow, H., Hiramatsu, S., Lynn, K., Abe, A., Kumaraswamy, A. and Tanimoto, H. (2020). Neurochemical organization of the PubMed DOI
Kotaki, T. and Yagi, S. (1989). Hormonal control of adult diapause in the brown-winged green bug, DOI
Kubrak, O. I., Kučerová, L., Theopold, U. and Nässel, D. R. (2014). The sleeping beauty: How reproductive diapause affects hormone signaling, metabolism, immune response and somatic maintenance in PubMed DOI PMC
Kunst, M., Hughes, M. E., Raccuglia, D., Felix, M., Li, M., Barnett, G., Duah, J. and Nitabach, M. N. (2014). Calcitonin gene-related peptide neurons mediate sleep-specific circadian output in PubMed DOI PMC
Kurogi, Y., Mizuno, Y., Imura, E. and Niwa, R. (2021). Neuroendocrine regulation of reproductive dormancy in the fruit fly DOI
Lee, S. S., Ding, Y., Karapetians, N., Rivera-Perez, C., Noriega, F. G. and Adams, M. E. (2017). Hormonal signaling cascade during an early-adult critical period required for courtship memory retention in PubMed DOI
Lin, H.-H., Kuang, M. C., Hossain, I., Xuan, Y., Beebe, L., Shepherd, A. K., Rolandi, M. and Wang, J. W. (2022). A nutrient-specific gut hormone arbitrates between courtship and feeding. PubMed DOI PMC
Luo, W., Liu, S., Zhang, W., Yang, L., Huang, J., Zhou, S., Feng, Q., Palli, S. R., Wang, J., Roth, S.et al. (2021). Juvenile hormone signaling promotes ovulation and maintains egg shape by inducing expression of extracellular matrix genes. PubMed DOI PMC
Ma, T., Matsuoka, S. and Drummond-Barbosa, D. (2020). RNAi-based screens uncover a potential new role for the orphan neuropeptide receptor Moody in PubMed DOI PMC
Mandel, S. J., Shoaf, M. L., Braco, J. T., Silver, W. L. and Johnson, E. C. (2018). Behavioral aversion to AITC requires both painless and dTRPA1 in PubMed DOI PMC
Matsumoto, K., Numata, H. and Shiga, S. (2013). Role of the brain in photoperiodic regulation of juvenile hormone biosynthesis in the brown-winged green bug PubMed DOI
Matsumoto, K., Suetsugu, Y., Tanaka, Y., Kotaki, T., Goto, S. G., Shinoda, T. and Shiga, S. (2017). Identification of allatostatins in the brown-winged green bug PubMed DOI
Matsuo, J., Nakayama, S. and Numata, H. (1997). Role of the corpus Allatum in the control of adult diapause in the blow fly, PubMed DOI
Meiselman, M., Lee, S. S., Tran, R.-T., Dai, H., Ding, Y., Rivera-Perez, C., Wijesekera, T. P., Dauwalder, B., Noriega, F. G. and Adams, M. E. (2017). Endocrine network essential for reproductive success in PubMed DOI PMC
Meiselman, M. R., Alpert, M. H., Cui, X., Shea, J., Gregg, I., Gallio, M. and Yapici, N. (2022). Recovery from cold-induced reproductive dormancy is regulated by temperature-dependent AstC signaling. PubMed DOI PMC
Meissner, G. W., Nern, A., Dorman, Z., DePasquale, G. M., Forster, K., Gibney, T., Hausenfluck, J. H., He, Y., Iyer, N. A., Jeter, J.et al. (2023). A searchable image resource of PubMed DOI PMC
Meuti, M. E. and Denlinger, D. L. (2013). Evolutionary links between circadian clocks and photoperiodic diapause in insects. PubMed DOI PMC
Miyasako, Y., Umezaki, Y. and Tomioka, K. (2007). Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of PubMed DOI
Mizuno, Y., Imura, E., Kurogi, Y., Shimada-Niwa, Y., Kondo, S., Tanimoto, H., Hückesfeld, S., Pankratz, M. J. and Niwa, R. (2021). A population of neurons that produce hugin and express the PubMed DOI
Nagy, D., Cusumano, P., Andreatta, G., Anduaga, A. M., Hermann-Luibl, C., Reinhard, N., Gesto, J., Wegener, C., Mazzotta, G., Rosato, E.et al. (2019). Peptidergic signaling from clock neurons regulates reproductive dormancy in PubMed DOI PMC
Nicolaï, L. J. J., Ramaekers, A., Raemaekers, T., Drozdzecki, A., Mauss, A. S., Yan, J., Landgraf, M., Annaert, W. and Hassan, B. A. (2010). Genetically encoded dendritic marker sheds light on neuronal connectivity in PubMed DOI PMC
Niwa, R., Niimi, T., Honda, N., Yoshiyama, M., Itoyama, K., Kataoka, H. and Shinoda, T. (2008). Juvenile hormone acid PubMed DOI
Ojima, N., Hara, Y., Ito, H. and Yamamoto, D. (2018). Genetic dissection of stress-induced reproductive arrest in PubMed DOI PMC
Okamoto, N. and Nishimura, T. (2015). Signaling from glia and cholinergic neurons controls nutrient-dependent production of an insulin-like peptide for PubMed DOI
Otsuna, H., Ito, M. and Kawase, T. (2018). Color depth MIP mask search: a new tool to expedite Split-GAL4 creation. DOI
Perkins, L. A., Holderbaum, L., Tao, R., Hu, Y., Sopko, R., McCall, K., Yang-Zhou, D., Flockhart, I., Binari, R., Shim, H.-S.et al. (2015). The transgenic RNAi project at Harvard medical school: resources and validation. PubMed DOI PMC
Plaza, S. M., Clements, J., Dolafi, T., Umayam, K., Neubarth, N. N., Scheffer, L. K. and Berg S. (2022). neuPrint: an open access tool for EM connectomics. PubMed DOI PMC
Poras, M. (1982). Le Contrôle endocrinien de la diapause imaginale des femelles de Tetrix undulata (Sowerby, 1806) (Orthoptere, Tetrigidae). PubMed DOI
Poras, M., Baehr, J. C. and Cassier, P. (1983). Control of corpus allatum activity during the imaginai diapause in females of DOI
Postlethwait, J. H. and Weiser, K. (1973). Vitellogenesis induced by juvenile hormone in the female sterile mutant PubMed DOI
Qu, Z., Bendena, W. G., Tobe, S. S. and Hui, J. H. L. (2018). Juvenile hormone and sesquiterpenoids in arthropods: Biosynthesis, signaling, and role of MicroRNA. PubMed DOI
Ramirez, C. E., Nouzova, M., Michalkova, V., Fernandez-Lima, F. and Noriega, F. G. (2020). Common structural features facilitate the simultaneous identification and quantification of the five most common juvenile hormones by liquid chromatography-tandem mass spectrometry. PubMed DOI PMC
Reiff, T., Jacobson, J., Cognigni, P., Antonello, Z., Ballesta, E., Tan, K. J., Yew, J. Y., Dominguez, M. and Miguel-Aliaga, I. (2015). Endocrine remodelling of the adult intestine sustains reproduction in PubMed DOI PMC
Riddiford, L. M. (2020). PubMed DOI PMC
Santos, C. G., Humann, F. C. and Hartfelder, K. (2019). Juvenile hormone signaling in insect oogenesis. PubMed DOI
Saunders, D. S. (1990). The circadian basis of ovarian diapause regulation in PubMed DOI
Saunders, D. S. (2020). Dormancy, diapause, and the role of the circadian system in insect photoperiodism. PubMed DOI
Saunders, D. S., Henrich, V. C. and Gilbert, L. I. (1989). Induction of diapause in PubMed DOI PMC
Saunders, D. S., Richard, D. S., Applebaum, S. W., Ma, M. and Gilbert, L. I. (1990). Photoperiodic diapause in PubMed DOI
Scheffer, L. K., Xu, C. S., Januszewski, M., Lu, Z., Takemura, S.-Y., Hayworth, K. J., Huang, G. B., Shinomiya, K., Maitin-Shepard, J., Berg, S.et al. (2020). A connectome and analysis of the adult PubMed DOI PMC
Schneider, C. A., Rasband, W. S. and Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. PubMed DOI PMC
Schwenke, R. A. and Lazzaro, B. P. (2017). Juvenile hormone suppresses resistance to infection in mated female PubMed DOI PMC
Shiga, S. and Numata, H. (2000). The role of neurosecretory neurons in the pars intercerebralis and pars lateralis in reproductive diapause of the blowfly, PubMed DOI
Shiga, S. and Numata, H. (2009). Roles of PER immunoreactive neurons in circadian rhythms and photoperiodism in the blow fly, PubMed DOI
Shiga, S., Toyoda, I. and Numata, H. (2000). Neurons projecting to the retrocerebral complex of the adult blow fly, PubMed DOI
Shimada-Niwa, Y. and Niwa, R. (2014). Serotonergic neurons respond to nutrients and regulate the timing of steroid hormone biosynthesis in PubMed DOI PMC
Shimokawa, K., Numata, H. and Shiga, S. (2008). Neurons important for the photoperiodic control of diapause in the bean bug, PubMed DOI
Shinoda, T. and Itoyama, K. (2003). Juvenile hormone acid methyltransferase: A key regulatory enzyme for insect metamorphosis. PubMed DOI PMC
Siegmund, T. and Korge, G. (2001). Innervation of the ring gland of PubMed DOI
Simpson, J. H. (2016). Rationally subdividing the fly nervous system with versatile expression reagents. PubMed DOI
Sliter, T. J., Sedlak, B. J., Baker, F. C. and Schooley, D. A. (1987). Juvenile hormone in DOI
Sugime, Y., Watanabe, D., Yasuno, Y., Shinada, T., Miura, T. and Tanaka, N. K. (2017). Upregulation of juvenile hormone titers in female PubMed DOI
Tatar, M. and Yin, C.-M. (2001). Slow aging during insect reproductive diapause: why butterflies, grasshoppers and flies are like worms. PubMed DOI
Tatar, M., Chien, S. A. and Priest, N. K. (2001). Negligible Senescence during Reproductive Dormancy in PubMed DOI
Umezaki, Y., Yoshii, T., Kawaguchi, T., Helfrich-Förster, C. and Tomioka, K. (2012). Pigment-dispersing factor is involved in age-dependent rhythm changes in PubMed DOI
Vanderveken, M. and O'Donnell, M. J. (2014). Effects of diuretic hormone 31, Drosokinin, and allatostatin A on transepitherial K PubMed DOI
Vecsey, C. G., Pírez, N. and Griffith, L. C. (2014). The PubMed DOI PMC
Veenstra, J. A., Agricola, H.-J. and Sellami, A. (2008). Regulatory peptides in fruit fly midgut. PubMed DOI
Wheeler, D. (2003). The role of nourishment in oogenesis. PubMed DOI
Wijesekera, T. P., Saurabh, S. and Dauwalder, B. (2016). Juvenile hormone is required in adult males for PubMed DOI PMC
Wu, B., Ma, L., Zhang, E., Du, J., Liu, S., Price, J., Li, S. and Zhao, Z. (2018). Sexual dimorphism of sleep regulated by juvenile hormone signaling in PubMed DOI PMC
Yamamoto, K., Chadarevian, A. and Pellegrini, M. (1988). Juvenile hormone action mediated in male accessory glands of PubMed DOI
Yamamoto, R., Bai, H., Dolezal, A. G., Amdam, G. and Tatar, M. (2013). Juvenile hormone regulation of PubMed DOI PMC
Yao, Z., Macara, A. M., Lelito, K. R., Minosyan, T. Y. and Shafer, O. T. (2012). Analysis of functional neuronal connectivity in the PubMed DOI PMC
Zhang, Y. Q., Rodesch, C. K. and Broadie, K. (2002). Living synaptic vesicle marker: Synaptotagmin-GFP. PubMed DOI
Zhang, S. X., Glantz, E. H., Miner, L. E., Rogulja, D. and Crickmore, M. A. (2021). Hormonal control of motivational circuitry orchestrates the transition to sexuality in PubMed DOI PMC
Zoephel, J., Reiher, W., Rexer, K.-H., Kahnt, J. and Wegener, C. (2012). Peptidomics of the agriculturally damaging larval stage of the cabbage root fly PubMed DOI PMC
Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin, and juvenile hormone
Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin and juvenile hormone