Female reproductive dormancy in Drosophila is regulated by DH31-producing neurons projecting into the corpus allatum
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37218457
PubMed Central
PMC10233717
DOI
10.1242/dev.201186
PII: 310536
Knihovny.cz E-zdroje
- Klíčová slova
- Drosophila, Corpus allatum, Diapause, Diuretic hormone 31, Juvenile hormone, Reproductive dormancy,
- MeSH
- corpora allata MeSH
- Drosophila melanogaster * genetika fyziologie MeSH
- hmyzí hormony * genetika fyziologie MeSH
- juvenilní hormony MeSH
- neurony MeSH
- proteiny Drosophily genetika fyziologie MeSH
- rozmnožování MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Dh31 protein, Drosophila MeSH Prohlížeč
- hmyzí hormony * MeSH
- juvenilní hormony MeSH
- proteiny Drosophily MeSH
Female insects can enter reproductive diapause, a state of suspended egg development, to conserve energy under adverse environments. In many insects, including the fruit fly, Drosophila melanogaster, reproductive diapause, also frequently called reproductive dormancy, is induced under low-temperature and short-day conditions by the downregulation of juvenile hormone (JH) biosynthesis in the corpus allatum (CA). In this study, we demonstrate that neuropeptide Diuretic hormone 31 (DH31) produced by brain neurons that project into the CA plays an essential role in regulating reproductive dormancy by suppressing JH biosynthesis in adult D. melanogaster. The CA expresses the gene encoding the DH31 receptor, which is required for DH31-triggered elevation of intracellular cAMP in the CA. Knocking down Dh31 in these CA-projecting neurons or DH31 receptor in the CA suppresses the decrease of JH titer, normally observed under dormancy-inducing conditions, leading to abnormal yolk accumulation in the ovaries. Our findings provide the first molecular genetic evidence demonstrating that CA-projecting peptidergic neurons play an essential role in regulating reproductive dormancy by suppressing JH biosynthesis.
Department of Parasitology University of South Bohemia České Budějovice 37005 Czech Republic
Graduate School of Life Sciences Tohoku University Katahira 2 1 1 Sendai Miyagi 980 8577 Japan
Zobrazit více v PubMed
Abdelsalam, S., Uemura, H., Umezaki, Y., Saifullah, A. S. M., Shimohigashi, M. and Tomioka, K. (2008). Characterization of PDF-immunoreactive neurons in the optic lobe and cerebral lobe of the cricket, Gryllus bimaculatus. J. Insect Physiol. 54, 1205-1212. 10.1016/j.jinsphys.2008.05.001 PubMed DOI
Abrieux, A., Xue, Y., Cai, Y., Lewald, K. M., Nguyen, H. N., Zhang, Y. and Chiu, J. C. (2020). EYES ABSENT and TIMELESS integrate photoperiodic and temperature cues to regulate seasonal physiology in Drosophila. Proc. Natl. Acad. Sci. USA 117, 15293-15304. 10.1073/pnas.2004262117 PubMed DOI PMC
Ádám, G., Perrimon, N. and Noselli, S. (2003). The retinoic-like juvenile hormone controls the looping of left-right asymmetric organs in Drosophila. Development 130, 2397-2406. 10.1242/dev.00460 PubMed DOI
Andreatta, G., Kyriacou, C. P., Flatt, T. and Costa, R. (2018). Aminergic signaling controls ovarian dormancy in Drosophila. Sci. Rep. 8, 2030. 10.1038/s41598-018-20407-z PubMed DOI PMC
Benguettat, O., Jneid, R., Soltys, J., Loudhaief, R., Brun-Barale, A., Osman, D. and Gallet, A. (2018). The DH31/CGRP enteroendocrine peptide triggers intestinal contractions favoring the elimination of opportunistic bacteria. PLoS Pathog. 14, e1007279. 10.1371/journal.ppat.1007279 PubMed DOI PMC
Bownes, M. (1989). The roles of juvenile hormone, ecdysone and the ovary in the control of Drosophila vitellogenesis. J. Insect Physiol. 35, 409-413. 10.1016/0022-1910(89)90115-7 DOI
Bownes, M. and Rembold, H. (1987). The titre of juvenile hormone during the pupal and adult stages of the life cycle of Drosophila melanogaster. Eur. J. Biochem. 164, 709-712. 10.1111/j.1432-1033.1987.tb11184.x PubMed DOI
Cai, W., Kim, C.-H., Go, H.-J., Egertová, M., Zampronio, C. G., Jones, A. M., Park, N. G. and Elphick, M. R. (2018). Biochemical, anatomical, and pharmacological characterization of Calcitonin-type neuropeptides in Starfish: Discovery of an ancient role as muscle relaxants. Front. Neurosci. 12, 382. 10.3389/fnins.2018.00382 PubMed DOI PMC
Clements, J., Goina, C., Kazimiers, A., Otsuna, H., Svirskas, R. and Rokicki, K. (2020). NeuronBridge codebase. https://janelia.figshare.com/articles/software/NeuronBridge_Codebase/12159378
Coast, G. M., Webster, S. G., Schegg, K. M., Tobe, S. S. and Schooley, D. A. (2001). The Drosophila melanogaster homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules. J. Exp. Biol. 204, 1795-1804. 10.1242/jeb.204.10.1795 PubMed DOI
De Wilde, J. and de Boer, J. A. (1969). Humoral and nervous pathways in photoperiodic induction of diapause in Leptinotarsa decemlineata. J. Insect Physiol. 15, 661-675. 10.1016/0022-1910(69)90263-7 DOI
Deng, B., Li, Q., Liu, X., Cao, Y., Li, B., Qian, Y., Xu, R., Mao, R., Zhou, E., Zhang, W.et al. (2019). Chemoconnectomics: mapping chemical transmission in Drosophila. Neuron 101, 876-893.e4. 10.1016/j.neuron.2019.01.045 PubMed DOI
Denlinger, D. L. (2002). Regulation of Diapause. Annu. Rev. Entomol. 47, 93-122. 10.1146/annurev.ento.47.091201.145137 PubMed DOI
Denlinger, D. L. (2008). Why study diapause? Entomol. Res. 38, 1-9. 10.1111/j.1748-5967.2008.00139.x DOI
Denlinger, D. L. (2022). Insect Diapause. Cambridge: Cambridge University Press.
Denlinger, D. L., Yocum, G. D. and Rinehart, J. P. (2012). Hormonal Control of Diapause. In Insect Endocrinology (ed. L. I. Gilbert), pp. 430-463. Elsevier.
Feinberg, E. H., VanHoven, M. K., Bendesky, A., Wang, G., Fetter, R. D., Shen, K. and Bargmann, C. I. (2008). GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353-363. 10.1016/j.neuron.2007.11.030 PubMed DOI
Flatt, T., Tu, M.-P. and Tatar, M. (2005). Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. BioEssays 27, 999-1010. 10.1002/bies.20290 PubMed DOI
Flatt, T., Heyland, A., Rus, F., Porpiglia, E., Sherlock, C., Yamamoto, R., Garbuzov, A., Palli, S. R., Tatar, M. and Silverman, N. (2008). Hormonal regulation of the humoral innate immune response in Drosophila melanogaster. J. Exp. Biol. 211, 2712-2724. 10.1242/jeb.014878 PubMed DOI PMC
Furuya, K., Milchak, R. J., Schegg, K. M., Zhang, J., Tobe, S. S., Coast, G. M. and Schooley, D. A. (2000). Cockroach diuretic hormones: characterization of a calcitonin-like peptide in insects. Proc. Natl. Acad. Sci. USA 97, 6469-6474. 10.1073/pnas.97.12.6469 PubMed DOI PMC
Gao, X. J., Riabinina, O., Li, J., Potter, C. J., Clandinin, T. R. and Luo, L. (2015). A transcriptional reporter of intracellular Ca2+ in Drosophila. Nat. Neurosci. 18, 917-925. 10.1038/nn.4016 PubMed DOI PMC
Goda, T., Tang, X., Umezaki, Y., Chu, M. L., Kunst, M., Nitabach, M. N. and Hamada, F. N. (2016). Drosophila DH31 neuropeptide and PDF receptor regulate night-onset temperature preference. J. Neurosci. 36, 11739-11754. 10.1523/JNEUROSCI.0964-16.2016 PubMed DOI PMC
Goda, T., Doi, M., Umezaki, Y., Murai, I., Shimatani, H., Chu, M. L., Nguyen, V. H., Okamura, H. and Hamada, F. N. (2018). Calcitonin receptors are ancient modulators for rhythms of preferential temperature in insects and body temperature in mammals. Genes Dev. 32, 140-155. 10.1101/gad.307884.117 PubMed DOI PMC
Goda, T., Umezaki, Y., Alwattari, F., Seo, H. W. and Hamada, F. N. (2019). Neuropeptides PDF and DH31 hierarchically regulate free-running rhythmicity in Drosophila circadian locomotor activity. Sci. Rep. 9, 838. 10.1038/s41598-018-37107-3 PubMed DOI PMC
Groth, A. C., Fish, M., Nusse, R. and Calos, M. P. (2004). Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775. 10.1534/GENETICS.166.4.1775 PubMed DOI PMC
Hamada, F. N., Rosenzweig, M., Kang, K., Pulver, S. R., Ghezzi, A., Jegla, T. J. and Garrity, P. A. (2008). An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217-220. 10.1038/nature07001 PubMed DOI PMC
Hamanaka, Y., Yasuyama, K., Numata, H. and Shiga, S. (2005). Synaptic connections between pigment-dispersing factor-immunoreactive neurons and neurons in the pars lateralis of the blow fly Protophormia terraenovae. J. Comp. Neurol. 491, 390-399. 10.1002/cne.20712 PubMed DOI
Hamanaka, Y., Tanaka, S., Numata, H. and Shiga, S. (2007). Peptide immunocytochemistry of neurons projecting to the retrocerebral complex in the blow fly, Protophormia terraenovae. Cell Tissue. Res. 329, 581-593. 10.1007/s00441-007-0433-3 PubMed DOI
Hamanaka, Y., Tanaka, S., Numata, H. and Shiga, S. (2009). Morphological characterization of neurons projecting to the ring gland in the larval blow fly, Protophormia terraenovae. Zoolog. Sci. 26, 227-237. 10.2108/zsj.26.227 PubMed DOI
Hand, S. C., Denlinger, D. L., Podrabsky, J. E. and Roy, R. (2016). Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R1193-R1211. 10.1152/ajpregu.00250.2015 PubMed DOI PMC
Harada, K., Ito, M., Wang, X., Tanaka, M., Wongso, D., Konno, A., Hirai, H., Hirase, H., Tsuboi, T. and Kitaguchi, T. (2017). Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging. Sci. Rep. 7, 7351. 10.1038/s41598-017-07820-6 PubMed DOI PMC
Hasebe, M. and Shiga, S. (2021a). Oviposition-promoting pars intercerebralis neurons show period-dependent photoperiodic changes in their firing activity in the bean bug. Proc. Natl. Acad. Sci. USA 118, e2018823118. 10.1073/pnas.2018823118 PubMed DOI PMC
Hasebe, M. and Shiga, S. (2021b). Photoperiodic response in the pars intercerebralis neurons, including Plast-MIP neurons, in the brown-winged green bug, Plautia stali. Zoolog. Sci. 38, 317-325. 10.2108/zs210005 PubMed DOI
Hasegawa, T., Hasebe, M. and Shiga, S. (2020). Immunohistochemical and direct mass spectral analyses of Plautia stali myoinhibitory peptides in the cephalic ganglia of the brown-winged green bug Plautia stali. Zoolog. Sci. 37, 42-49. 10.2108/zs190092 PubMed DOI
Head, L. M., Tang, X., Hayley, S. E., Goda, T., Umezaki, Y., Chang, E. C., Leslie, J. R., Fujiwara, M., Garrity, P. A. and Hamada, F. N. (2015). The influence of light on temperature preference in Drosophila. Curr. Biol. 25, 1063-1068. 10.1016/j.cub.2015.02.038 PubMed DOI PMC
Helfrich-Förster, C. (1995). The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 92, 612-616. 10.1073/pnas.92.2.612 PubMed DOI PMC
Hodková, M. (1976). Nervous inhibition of corpora allata by photoperiod in Pyrrhocoris apterus. Nature 263, 521-523. 10.1038/263521a0 PubMed DOI
Hutfilz, C. (2022). Endocrine regulation of lifespan in insect diapause. Front. Physiol. 13, 825057. 10.3389/fphys.2022.825057 PubMed DOI PMC
Imura, E., Shimada-Niwa, Y., Nishimura, T., Hückesfeld, S., Schlegel, P., Ohhara, Y., Kondo, S., Tanimoto, H., Cardona, A., Pankratz, M. J.et al. (2020). The Corazonin-PTTH Neuronal Axis Controls Systemic Body Growth by Regulating Basal Ecdysteroid Biosynthesis in Drosophila melanogaster. Curr. Biol. 30, 2156-2165.e5. 10.1016/j.cub.2020.03.050 PubMed DOI
Ito, K., Suzuki, K., Estes, P., Ramaswami, M., Yamamoto, D. and Strausfeld, N. J. (1998). The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learn. Mem. 5, 52-77. 10.1101/lm.5.1.52 PubMed DOI PMC
Jenett, A., Rubin, G. M., Ngo, T.-T. B., Shepherd, D., Murphy, C., Dionne, H., Pfeiffer, B. D., Cavallaro, A., Hall, D., Jeter, J.et al. (2012). A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2, 991-1001. 10.1016/j.celrep.2012.09.011 PubMed DOI PMC
Johard, H. A. D., Yoishii, T., Dircksen, H., Cusumano, P., Rouyer, F., Helfrich-Förster, C. and Nässel, D. R. (2009). Peptidergic clock neurons in Drosophila: Ion transport peptide and short neuropeptide F in subsets of dorsal and ventral lateral neurons. J. Comp. Neurol. 516, 59-73. 10.1002/cne.22099 PubMed DOI
Johnson, E. C., Shafer, O. T., Trigg, J. S., Park, J., Schooley, D. A., Dow, J. A. and Taghert, P. H. (2005). A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. J. Exp. Biol. 208, 1239-1246. 10.1242/jeb.01529 PubMed DOI
Kaneko, H., Head, L. M., Ling, J., Tang, X., Liu, Y., Hardin, P. E., Emery, P. and Hamada, F. N. (2012). Circadian rhythm of temperature preference and its neural control in Drosophila. Curr. Biol. 22, 1851-1857. 10.1016/j.cub.2012.08.006 PubMed DOI PMC
Khan, M. A., Romberg-Privee, H. M. and Koopmanschap, A. B. (1986). Location of allatostatic centers in the pars lateralis regions of the brain of the Colorado potato beetle. Experimentia 42, 836-838. 10.1007/BF01941545 DOI
King, R. C. (1970). The meiotic behavior of the Drosophila oocyte. Int. Rev. Cytol. 28, 125-168. 10.1016/S0074-7696(08)62542-5 PubMed DOI
Kondo, S., Takahashi, T., Yamagata, N., Imanishi, Y., Katow, H., Hiramatsu, S., Lynn, K., Abe, A., Kumaraswamy, A. and Tanimoto, H. (2020). Neurochemical organization of the Drosophila brain visualized by endogenously tagged neurotransmitter receptors. Cell Rep. 30, 284-297.e5. 10.1016/j.celrep.2019.12.018 PubMed DOI
Kotaki, T. and Yagi, S. (1989). Hormonal control of adult diapause in the brown-winged green bug, Plautia stali SCOTT (Heteroptera: Pentatomidae). Appl. Entomol. Zool. 24, 42-51. 10.1303/AEZ.24.42 DOI
Kubrak, O. I., Kučerová, L., Theopold, U. and Nässel, D. R. (2014). The sleeping beauty: How reproductive diapause affects hormone signaling, metabolism, immune response and somatic maintenance in Drosophila melanogaster. PLoS ONE 9, e113051. 10.1371/journal.pone.0113051 PubMed DOI PMC
Kunst, M., Hughes, M. E., Raccuglia, D., Felix, M., Li, M., Barnett, G., Duah, J. and Nitabach, M. N. (2014). Calcitonin gene-related peptide neurons mediate sleep-specific circadian output in Drosophila. Curr. Biol. 24, 2652-2664. 10.1016/j.cub.2014.09.077 PubMed DOI PMC
Kurogi, Y., Mizuno, Y., Imura, E. and Niwa, R. (2021). Neuroendocrine regulation of reproductive dormancy in the fruit fly Drosophila melanogaster: a review of juvenile hormone-dependent regulation. Front. Ecol. Evol. 9, 715029. 10.3389/fevo.2021.715029 DOI
Lee, S. S., Ding, Y., Karapetians, N., Rivera-Perez, C., Noriega, F. G. and Adams, M. E. (2017). Hormonal signaling cascade during an early-adult critical period required for courtship memory retention in Drosophila. Curr. Biol. 27, 2798-2809.e3. 10.1016/j.cub.2017.08.017 PubMed DOI
Lin, H.-H., Kuang, M. C., Hossain, I., Xuan, Y., Beebe, L., Shepherd, A. K., Rolandi, M. and Wang, J. W. (2022). A nutrient-specific gut hormone arbitrates between courtship and feeding. Nature 602, 632-638. 10.1038/s41586-022-04408-7 PubMed DOI PMC
Luo, W., Liu, S., Zhang, W., Yang, L., Huang, J., Zhou, S., Feng, Q., Palli, S. R., Wang, J., Roth, S.et al. (2021). Juvenile hormone signaling promotes ovulation and maintains egg shape by inducing expression of extracellular matrix genes. Proc. Natl. Acad. Sci. USA 118, e2104461118. 10.1073/pnas.2104461118 PubMed DOI PMC
Ma, T., Matsuoka, S. and Drummond-Barbosa, D. (2020). RNAi-based screens uncover a potential new role for the orphan neuropeptide receptor Moody in Drosophila female germline stem cell maintenance. PLoS ONE 15, e0243756. 10.1371/JOURNAL.PONE.0243756 PubMed DOI PMC
Mandel, S. J., Shoaf, M. L., Braco, J. T., Silver, W. L. and Johnson, E. C. (2018). Behavioral aversion to AITC requires both painless and dTRPA1 in Drosophila. Front. Neural Circuits 12, 45. 10.3389/FNCIR.2018.00045 PubMed DOI PMC
Matsumoto, K., Numata, H. and Shiga, S. (2013). Role of the brain in photoperiodic regulation of juvenile hormone biosynthesis in the brown-winged green bug Plautia stali. J. Insect Physiol. 59, 387-393. 10.1016/j.jinsphys.2013.01.007 PubMed DOI
Matsumoto, K., Suetsugu, Y., Tanaka, Y., Kotaki, T., Goto, S. G., Shinoda, T. and Shiga, S. (2017). Identification of allatostatins in the brown-winged green bug Plautia stali. J. Insect Physiol. 96, 21-28. 10.1016/j.jinsphys.2016.10.005 PubMed DOI
Matsuo, J., Nakayama, S. and Numata, H. (1997). Role of the corpus Allatum in the control of adult diapause in the blow fly, Protophormia terraenovae. J. Insect Physiol. 43, 211-216. 10.1016/S0022-1910(96)00103-5 PubMed DOI
Meiselman, M., Lee, S. S., Tran, R.-T., Dai, H., Ding, Y., Rivera-Perez, C., Wijesekera, T. P., Dauwalder, B., Noriega, F. G. and Adams, M. E. (2017). Endocrine network essential for reproductive success in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 114, E3849-E3858. 10.1073/pnas.1620760114 PubMed DOI PMC
Meiselman, M. R., Alpert, M. H., Cui, X., Shea, J., Gregg, I., Gallio, M. and Yapici, N. (2022). Recovery from cold-induced reproductive dormancy is regulated by temperature-dependent AstC signaling. Curr. Biol. 32, 1362-1375.e8. 10.1016/j.cub.2022.01.061 PubMed DOI PMC
Meissner, G. W., Nern, A., Dorman, Z., DePasquale, G. M., Forster, K., Gibney, T., Hausenfluck, J. H., He, Y., Iyer, N. A., Jeter, J.et al. (2023). A searchable image resource of Drosophila GAL4-driver expression patterns with single neuron resolution. eLife 12, e80660. 10.7554/ELIFE.80660 PubMed DOI PMC
Meuti, M. E. and Denlinger, D. L. (2013). Evolutionary links between circadian clocks and photoperiodic diapause in insects. Integr. Comp. Biol. 53, 131-143. 10.1093/icb/ict023 PubMed DOI PMC
Miyasako, Y., Umezaki, Y. and Tomioka, K. (2007). Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of Drosophila circadian locomotor rhythms. J. Biol. Rhythms 22, 115-126. 10.1177/0748730407299344 PubMed DOI
Mizuno, Y., Imura, E., Kurogi, Y., Shimada-Niwa, Y., Kondo, S., Tanimoto, H., Hückesfeld, S., Pankratz, M. J. and Niwa, R. (2021). A population of neurons that produce hugin and express the diuretic hormone 44 receptor gene projects to the corpora allata in Drosophila melanogaster. Dev. Growth Differ. 63, 249-261. 10.1111/dgd.12733 PubMed DOI
Nagy, D., Cusumano, P., Andreatta, G., Anduaga, A. M., Hermann-Luibl, C., Reinhard, N., Gesto, J., Wegener, C., Mazzotta, G., Rosato, E.et al. (2019). Peptidergic signaling from clock neurons regulates reproductive dormancy in Drosophila melanogaster. PLoS Genet. 15, e1008158. 10.1371/journal.pgen.1008158 PubMed DOI PMC
Nicolaï, L. J. J., Ramaekers, A., Raemaekers, T., Drozdzecki, A., Mauss, A. S., Yan, J., Landgraf, M., Annaert, W. and Hassan, B. A. (2010). Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila. Proc. Natl. Acad. Sci. USA 107, 20553-20558. 10.1073/pnas.1010198107 PubMed DOI PMC
Niwa, R., Niimi, T., Honda, N., Yoshiyama, M., Itoyama, K., Kataoka, H. and Shinoda, T. (2008). Juvenile hormone acid O-methyltransferase in Drosophila melanogaster. Insect Biochem. Mol. Biol. 38, 714-720. 10.1016/j.ibmb.2008.04.003 PubMed DOI
Ojima, N., Hara, Y., Ito, H. and Yamamoto, D. (2018). Genetic dissection of stress-induced reproductive arrest in Drosophila melanogaster females. PLoS Genet. 14, e1007434. 10.1371/journal.pgen.1007434 PubMed DOI PMC
Okamoto, N. and Nishimura, T. (2015). Signaling from glia and cholinergic neurons controls nutrient-dependent production of an insulin-like peptide for Drosophila body growth. Dev. Cell 35, 295-310. 10.1016/j.devcel.2015.10.003 PubMed DOI
Otsuna, H., Ito, M. and Kawase, T. (2018). Color depth MIP mask search: a new tool to expedite Split-GAL4 creation. bioRxiv. 10.1101/318006 DOI
Perkins, L. A., Holderbaum, L., Tao, R., Hu, Y., Sopko, R., McCall, K., Yang-Zhou, D., Flockhart, I., Binari, R., Shim, H.-S.et al. (2015). The transgenic RNAi project at Harvard medical school: resources and validation. Genetics 201, 843-852. 10.1534/genetics.115.180208 PubMed DOI PMC
Plaza, S. M., Clements, J., Dolafi, T., Umayam, K., Neubarth, N. N., Scheffer, L. K. and Berg S. (2022). neuPrint: an open access tool for EM connectomics. Front. Neuroinform. 16, 896292. 10.3389/fninf.2022.896292 PubMed DOI PMC
Poras, M. (1982). Le Contrôle endocrinien de la diapause imaginale des femelles de Tetrix undulata (Sowerby, 1806) (Orthoptere, Tetrigidae). Gen. Comp. Endocrinol. 46, 200-210. 10.1016/0016-6480(82)90202-7 PubMed DOI
Poras, M., Baehr, J. C. and Cassier, P. (1983). Control of corpus allatum activity during the imaginai diapause in females of Locusta migratoria L. Int. J. Invertebr. Reprod. 6, 111-122. 10.1080/01651269.1983.10510030 DOI
Postlethwait, J. H. and Weiser, K. (1973). Vitellogenesis induced by juvenile hormone in the female sterile mutant apterous-four in Drosophila melanogaster. Nat. New Biol. 244, 284-285. 10.1038/newbio244284a0 PubMed DOI
Qu, Z., Bendena, W. G., Tobe, S. S. and Hui, J. H. L. (2018). Juvenile hormone and sesquiterpenoids in arthropods: Biosynthesis, signaling, and role of MicroRNA. J. Steroid Biochem. Mol. Biol. 184, 69-76. 10.1016/j.jsbmb.2018.01.013 PubMed DOI
Ramirez, C. E., Nouzova, M., Michalkova, V., Fernandez-Lima, F. and Noriega, F. G. (2020). Common structural features facilitate the simultaneous identification and quantification of the five most common juvenile hormones by liquid chromatography-tandem mass spectrometry. Insect Biochem. Mol. Biol. 116, 103287. 10.1016/j.ibmb.2019.103287 PubMed DOI PMC
Reiff, T., Jacobson, J., Cognigni, P., Antonello, Z., Ballesta, E., Tan, K. J., Yew, J. Y., Dominguez, M. and Miguel-Aliaga, I. (2015). Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. eLife 4, e06930. 10.7554/eLife.06930 PubMed DOI PMC
Riddiford, L. M. (2020). Rhodnius, golden oil, and met: a history of juvenile hormone research. Front. Cell Dev. Biol. 8, 679. 10.3389/fcell.2020.00679 PubMed DOI PMC
Santos, C. G., Humann, F. C. and Hartfelder, K. (2019). Juvenile hormone signaling in insect oogenesis. Curr. Opin. Insect Sci. 31, 43-48. 10.1016/j.cois.2018.07.010 PubMed DOI
Saunders, D. S. (1990). The circadian basis of ovarian diapause regulation in Drosophila melanogaster: Is the period Gene causally involved in photoperiodic time measurement? J. Biol. Rhythms 5, 315-331. 10.1177/074873049000500404 PubMed DOI
Saunders, D. S. (2020). Dormancy, diapause, and the role of the circadian system in insect photoperiodism. Annu. Rev. Entomol. 65, 373-389. 10.1146/annurev-ento-011019-025116 PubMed DOI
Saunders, D. S., Henrich, V. C. and Gilbert, L. I. (1989). Induction of diapause in Drosophila melanogaster: photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. Proc. Natl. Acad. Sci. USA 86, 3748-3752. 10.1073/pnas.86.10.3748 PubMed DOI PMC
Saunders, D. S., Richard, D. S., Applebaum, S. W., Ma, M. and Gilbert, L. I. (1990). Photoperiodic diapause in Drosophila melanogaster involves a block to the juvenile hormone regulation of ovarian maturation. Gen. Comp. Endocrinol. 79, 174-184. 10.1016/0016-6480(90)90102-R PubMed DOI
Scheffer, L. K., Xu, C. S., Januszewski, M., Lu, Z., Takemura, S.-Y., Hayworth, K. J., Huang, G. B., Shinomiya, K., Maitin-Shepard, J., Berg, S.et al. (2020). A connectome and analysis of the adult Drosophila central brain. eLife 9, e57443. 10.7554/eLife.57443 PubMed DOI PMC
Schneider, C. A., Rasband, W. S. and Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675. 10.1038/nmeth.2089 PubMed DOI PMC
Schwenke, R. A. and Lazzaro, B. P. (2017). Juvenile hormone suppresses resistance to infection in mated female Drosophila melanogaster. Curr. Biol. 27, 596-601. 10.1016/j.cub.2017.01.004 PubMed DOI PMC
Shiga, S. and Numata, H. (2000). The role of neurosecretory neurons in the pars intercerebralis and pars lateralis in reproductive diapause of the blowfly, Protophormia terraenovae. Naturwissenschaften 87, 125-128. 10.1007/s001140050689 PubMed DOI
Shiga, S. and Numata, H. (2009). Roles of PER immunoreactive neurons in circadian rhythms and photoperiodism in the blow fly, Protophormia terraenovae. J. Exp. Biol. 212, 867-877. 10.1242/jeb.027003 PubMed DOI
Shiga, S., Toyoda, I. and Numata, H. (2000). Neurons projecting to the retrocerebral complex of the adult blow fly, Protophormia terraenovae. Cell Tissue Res. 299, 427-439. 10.1007/s004410050041 PubMed DOI
Shimada-Niwa, Y. and Niwa, R. (2014). Serotonergic neurons respond to nutrients and regulate the timing of steroid hormone biosynthesis in Drosophila. Nat. Commun. 5, 5778. 10.1038/ncomms6778 PubMed DOI PMC
Shimokawa, K., Numata, H. and Shiga, S. (2008). Neurons important for the photoperiodic control of diapause in the bean bug, Riptortus pedestris. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194, 751-762. 10.1007/s00359-008-0346-y PubMed DOI
Shinoda, T. and Itoyama, K. (2003). Juvenile hormone acid methyltransferase: A key regulatory enzyme for insect metamorphosis. Proc. Natl. Acad. Sci. USA 100, 11986-11991. 10.1073/pnas.2134232100 PubMed DOI PMC
Siegmund, T. and Korge, G. (2001). Innervation of the ring gland of Drosophila melanogaster. J. Comp. Neurol. 431, 481-491. 10.1002/1096-9861(20010319)431:4<481::AID-CNE1084>3.0.CO;2-7 PubMed DOI
Simpson, J. H. (2016). Rationally subdividing the fly nervous system with versatile expression reagents. J. Neurogenet. 30, 185-194. 10.1080/01677063.2016.1248761 PubMed DOI
Sliter, T. J., Sedlak, B. J., Baker, F. C. and Schooley, D. A. (1987). Juvenile hormone in Drosophila melanogaster: identification and titer determination during development. Insect Biochem. 17, 161-165. 10.1016/0020-1790(87)90156-9 DOI
Sugime, Y., Watanabe, D., Yasuno, Y., Shinada, T., Miura, T. and Tanaka, N. K. (2017). Upregulation of juvenile hormone titers in female Drosophila melanogaster through mating experiences and host food occupied by eggs and larvae. Zoolog. Sci. 34, 52-57. 10.2108/zs160150 PubMed DOI
Tatar, M. and Yin, C.-M. (2001). Slow aging during insect reproductive diapause: why butterflies, grasshoppers and flies are like worms. Exp. Gerontol. 36, 723-738. 10.1016/S0531-5565(00)00238-2 PubMed DOI
Tatar, M., Chien, S. A. and Priest, N. K. (2001). Negligible Senescence during Reproductive Dormancy in Drosophila melanogaster. Am. Nat. 158, 248-258. 10.1086/321320 PubMed DOI
Umezaki, Y., Yoshii, T., Kawaguchi, T., Helfrich-Förster, C. and Tomioka, K. (2012). Pigment-dispersing factor is involved in age-dependent rhythm changes in Drosophila melanogaster. J. Biol. Rhythms 27, 423-432. 10.1177/0748730412462206 PubMed DOI
Vanderveken, M. and O'Donnell, M. J. (2014). Effects of diuretic hormone 31, Drosokinin, and allatostatin A on transepitherial K+ transport and contraction frequency in the midgut and hindgut of larval Drosophila melanogaster. Arch. Insect Biochem. Physiol. 85, 76-93. 10.1002/arch.21144 PubMed DOI
Vecsey, C. G., Pírez, N. and Griffith, L. C. (2014). The Drosophila neuropeptides PDF and sNPF have opposing electrophysiological and molecular effects on central neurons. J. Neurophysiol. 111, 1033-1045. 10.1152/jn.00712.2013 PubMed DOI PMC
Veenstra, J. A., Agricola, H.-J. and Sellami, A. (2008). Regulatory peptides in fruit fly midgut. Cell Tissue. Res. 334, 499-516. 10.1007/s00441-008-0708-3 PubMed DOI
Wheeler, D. (2003). The role of nourishment in oogenesis. Annu. Rev. Entomol. 41, 407-431. 10.1146/annurev.en.41.010196.002203 PubMed DOI
Wijesekera, T. P., Saurabh, S. and Dauwalder, B. (2016). Juvenile hormone is required in adult males for Drosophila courtship. PLoS ONE 11, e0151912. 10.1371/journal.pone.0151912 PubMed DOI PMC
Wu, B., Ma, L., Zhang, E., Du, J., Liu, S., Price, J., Li, S. and Zhao, Z. (2018). Sexual dimorphism of sleep regulated by juvenile hormone signaling in Drosophila. PLoS Genet. 14, e1007318. 10.1371/journal.pgen.1007318 PubMed DOI PMC
Yamamoto, K., Chadarevian, A. and Pellegrini, M. (1988). Juvenile hormone action mediated in male accessory glands of Drosophila by calcium and kinase C. Science 239, 916-919. 10.1126/science.3124270 PubMed DOI
Yamamoto, R., Bai, H., Dolezal, A. G., Amdam, G. and Tatar, M. (2013). Juvenile hormone regulation of Drosophila aging. BMC Biol. 11, 85. 10.1186/1741-7007-11-85 PubMed DOI PMC
Yao, Z., Macara, A. M., Lelito, K. R., Minosyan, T. Y. and Shafer, O. T. (2012). Analysis of functional neuronal connectivity in the Drosophila brain. J. Neurophysiol. 108, 684-696. 10.1152/jn.00110.2012 PubMed DOI PMC
Zhang, Y. Q., Rodesch, C. K. and Broadie, K. (2002). Living synaptic vesicle marker: Synaptotagmin-GFP. Genesis 34, 142-145. 10.1002/gene.10144 PubMed DOI
Zhang, S. X., Glantz, E. H., Miner, L. E., Rogulja, D. and Crickmore, M. A. (2021). Hormonal control of motivational circuitry orchestrates the transition to sexuality in Drosophila. Sci. Adv. 7, eabg6926. 10.1126/sciadv.abg6926 PubMed DOI PMC
Zoephel, J., Reiher, W., Rexer, K.-H., Kahnt, J. and Wegener, C. (2012). Peptidomics of the agriculturally damaging larval stage of the cabbage root fly Delia radicum (Diptera: Anthomyiidae). PLoS ONE 7, e41543. 10.1371/journal.pone.0041543 PubMed DOI PMC
Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin, and juvenile hormone
Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin and juvenile hormone