Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin and juvenile hormone

. 2024 Jun 30 ; () : . [epub] 20240630

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, preprinty

Perzistentní odkaz   https://www.medvik.cz/link/pmid38979180

Grantová podpora
R01 AG059563 NIA NIH HHS - United States
R21 AI167849 NIAID NIH HHS - United States
R37 AG024360 NIA NIH HHS - United States

Dietary restriction slows aging in many animals, while in some cases the sensory signals from diet alone are sufficient to retard or accelerate lifespan. The digestive tract is a candidate location to sense nutrients, where neuropeptides secreted by enteroendocrine cells (EEC) produce systemic signals in response to food. Here we measure how Drosophila neuropeptide F (NPF) is secreted into adult circulation by enteroendocrine cells and find that specific enteroendocrine cells differentially respond to dietary sugar and yeast. Lifespan is increased when gut NPF is genetically depleted, and this manipulation is sufficient to blunt the longevity benefit conferred by dietary restriction. Depletion of NPF receptors at insulin producing neurons of the brain also increases lifespan, consistent with observations where loss of gut NPF decreases neuronal insulin secretion. The longevity conferred by repressing gut NPF and brain NPF receptors is reversed by treating adults with a juvenile hormone (JH) analog. JH is produced by the adult corpora allata, and inhibition of the insulin receptor at this tissue decreases JH titer and extends lifespan, while this longevity is restored to wild type by treating adults with a JH analog. Overall, enteroendocrine cells of the gut modulate Drosophila aging through interorgan communication mediated by a gut-brain-corpora allata axis, and insulin produced in the brain impacts lifespan through its control of JH titer. These data suggest that we should consider how human incretins and their analogs, which are used to treat obesity and diabetes, may impact aging.

Aktualizováno

PubMed

Zobrazit více v PubMed

Gribble F. M., Reimann F., Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat Rev Endocrinol 15, 226–237 (2019). PubMed

Beumer J. et al. , High-Resolution mRNA and secretome atlas of human enteroendocrine cells. Cell 182, 1062–1064 (2020). PubMed

Afroze S. et al. , The physiological roles of secretin and its receptor. Ann Transl Med 1, 29 (2013). PubMed PMC

Mendieta-Zeron H., Lopez M., Dieguez C., Gastrointestinal peptides controlling body weight homeostasis. Gen Comp Endocrinol 155, 481–495 (2008). PubMed

Seino Y., Fukushima M., Yabe D., GIP and GLP-1, the two incretin hormones: Similarities and differences. J Diabetes Investig 1, 8–23.(2010). PubMed PMC

Holst J. J., The physiology of glucagon-like peptide 1. Physiol Rev 87, 1409–1439 (2007). PubMed

Andersen A., Lund A., Knop F. K., Vilsboll T., Glucagon-like peptide 1 in health and disease. Nat Rev Endocrinol 14, 390–403 (2018). PubMed

Sharma D., Verma S., Vaidya S., Kalia K., Tiwari V., Recent updates on GLP-1 agonists: Current advancements & challenges. Biomed Pharmacother 108, 952–962 (2018). PubMed

Spector R., A revolution in the treatment of obesity. Am J Med 10.1016/j.amjmed.2024.05.023 (2024). PubMed DOI

Garcia-Arraras J. E., Lefebre-Rivera M., Qi-Huang S., Enteroendocrine cells in the Echinodermata. Cell Tissue Res 377, 459–467 (2019). PubMed

Wegener C., Veenstra J. A., Chemical identity, function and regulation of enteroendocrine peptides in insects. Curr Opin Insect Sci 11, 8–13 (2015). PubMed

Guo X., Lv J., Xi R., The specification and function of enteroendocrine cells in Drosophila and mammals: a comparative review. FEBS J 289, 4773–4796 (2022). PubMed

Verhaert P. et al. , Dual location of neuropeptide F in the central nervous system and midgut of the fruitfly

Veenstra J. A., Agricola H. J., Sellami A., Regulatory peptides in fruit fly midgut. Cell Tissue Res 334, 499–516 (2008). PubMed

Hung R.J. et al. , A cell atlas of the adult PubMed PMC

Reiher W. et al. , Peptidomics and peptide hormone processing in the PubMed

Nassel D. R., Winther A. M., PubMed

Amcheslavsky A. et al. , Enteroendocrine cells support intestinal stem-cell-mediated homeostasis in Drosophila. Cell Rep 9, 32–39 (2014). PubMed PMC

Scopelliti A. et al. , Local control of intestinal stem cell homeostasis by enteroendocrine cells in the adult PubMed PMC

Talsma A. D. et al. , Remote control of renal physiology by the intestinal neuropeptide pigment-dispersing factor in PubMed PMC

Okamoto N., Watanabe A., Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly (Austin) 16, 152–176 (2022). PubMed PMC

Wahlestedt C., Reis D. J., Neuropeptide Y-related peptides and their receptors--are the receptors potential therapeutic drug targets? Annu Rev Pharmacol Toxicol 33, 309–352 (1993). PubMed

Brown M. R. et al. , Identification of a PubMed

Li X. J., Wu Y. N., North R. A., Forte M., Cloning, functional expression, and developmental regulation of a neuropeptide Y receptor from PubMed

Ameku T., Niwa R., Mating-induced increase in germline stem cells via the neuroendocrine system in female PubMed PMC

Malita A. et al. , A gut-derived hormone suppresses sugar appetite and regulates food choice in Drosophila. Nat Metab 4, 1532–1550 (2022). PubMed PMC

Yoshinari Y. et al. , The sugar-responsive enteroendocrine neuropeptide F regulates lipid metabolism through glucagon-like and insulin-like hormones in PubMed PMC

Wen T., Parrish C. A., Xu D., Wu Q., Shen P., PubMed PMC

Krause S. A., Overend G., Dow J. A. T., Leader D. P., FlyAtlas 2 in 2022: enhancements to the PubMed PMC

Tatar M. et al. , A mutant PubMed

Broughton S. J. et al. , DILP-producing median neurosecretory cells in the PubMed PMC

Yamamoto R., Palmer M., Koski H., Curtis-Joseph N., Tatar M., Aging modulated by the PubMed PMC

Gao J. et al. , Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion. Nat Commun 15, 3514 (2024). PubMed PMC

Droujinine I. A. et al. , Proteomics of protein trafficking by in vivo tissue-specific labeling. Nat Commun 12, 2382 (2021). PubMed PMC

Chung B. Y. et al. , PubMed PMC

Masuyama K., Zhang Y., Rao Y., Wang J. W., Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J Neurogenet 26, 89–102 (2012). PubMed PMC

Sidhu S. S., Thompson D. G., Warhurst G., Case R. M., Benson R. S., Fatty acid-induced cholecystokinin secretion and changes in intracellular Ca2+ in two enteroendocrine cell lines, STC-1 and GLUTag. J Physiol 528, 165–176 (2000). PubMed PMC

Ameku T. et al. , Midgut-derived neuropeptide F controls germline stem cell proliferation in a mating-dependent manner. PLoS Biol 16, e2005004 (2018). PubMed PMC

Yamamoto R., Bai H., Dolezal A. G., Amdam G., Tatar M., Juvenile hormone regulation of Drosophila aging. BMC Biol 11, 85 (2013). PubMed PMC

Abdou M. A. et al. , PubMed

Wang C., Zhang J., Tobe S. S., Bendena W. G., Defining the contribution of select neuropeptides and their receptors in regulating sesquiterpenoid biosynthesis by PubMed

Belgacem Y. H., Martin J. R., Hmgcr in the PubMed PMC

Rivera-Pérez C., Clifton M. E., Noriega F. G., Jindra M. (2020) Juvenile hormone regulation and action. in Advances in Invertebrate (Neuro)Endocrinology: A Collection of Reviews in the Post-Genomic Era, eds Saleuddin S., Lange A. B., Orchard I. (Apple Academic Press; ), pp 76.

Bendena W.G., Hui J. H. L., Chin-Sang I., Tobe S. S., Neuropeptide and microRNA regulators of juvenile hormone production. Gen Comp Endocrinol. 295,113507 (2020). PubMed

Zhang C. et al. , The neuropeptide allatostatin C from clock-associated DN1p neurons generates the circadian rhythm for oogenesis. Proc Natl Acad Sci USA 118, e2016878118 (2021). PubMed PMC

Meiselman M. et al. , Endocrine network essential for reproductive success in PubMed PMC

Zhang C., Kim A. J., Rivera-Perez C., Noriega F. G., Kim Y. J., The insect somatostatin pathway gates vitellogenesis progression during reproductive maturation and the post-mating response. Nat Commun 13, 969 (2022). PubMed PMC

Lee S. S., Adams M. E., Regulation of PubMed DOI PMC

Lee K. P. et al. , Lifespan and reproduction in PubMed PMC

Tatar M., Post S., Yu K., Nutrient control of PubMed PMC

Gendron C. M. et al. , PubMed PMC

Tu M. P., Yin C. M., Tatar M., Mutations in insulin signaling pathway alter juvenile hormone synthesis in PubMed

Bownes M., The roles for juvenile hormone, ecdysone and the ovary in the control of

Reiff T. et al. , Endocrine remodeling of the adult intestine sustains reproduction in PubMed PMC

Nässel D. R., Kubrak O.I., Liu Y., Luo J., Lushchak O.V., Factors that regulate insulin producing cells and their output in Drosophila. Front Physiol. 17, 252 (2013). PubMed PMC

Ahmed S. M. H. et al. , Fitness trade-offs incurred by ovary-to-gut steroid signaling in PubMed PMC

Tatar M., Yin C.-M., Slow aging during insect reproductive diapause: why butterflies, grasshoppers and flies are like worms. Experimental Gerontology 336, 723–738 (2001). PubMed

Kim H. S. et al. , Early-adulthood spike in protein translation drives aging via juvenile hormone/germline signaling. Nat Commun 14, 5021 (2023). PubMed PMC

Flatt T., Moroz L. L., Tatar M., Heyland A., Comparing thyroid and insect hormone signaling. Integr Comp Biol 46, 777–794 (2006). PubMed

Holzer P., Reichmann F., Farzi A., Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut–brain axis. Neuropeptides 46, 261–274 (2012). PubMed PMC

Engelstoft M. S., Egerod K. L., Lund M. L., Schwartz T. W., Enteroendocrine cell types revisited. Curr Opin Pharmacol 13, 912–921 (2013). PubMed

Botelho M., Cavadas C., Neuropeptide Y: An anti-aging player? Trends Neurosci 38, 701–711 (2015). PubMed

Tovar S. A. et al. , Regulation of peptide YY levels by age, hormonal, and nutritional status. Obes Res 12, 1944–1950 (2004). PubMed

van Heemst D., The ageing thyroid: implications for longevity and patient care. Nat Rev Endocrinol 20, 5–15 (2024). PubMed

Boey D., Sainsbury A., Herzog H., The role of peptide YY in regulating glucose homeostasis. Peptides 28, 390–395 (2007). PubMed

Boey D. et al. , PYY transgenic mice are protected against diet-induced and genetic obesity. Neuropeptides 42, 19–30 (2008). PubMed

Roman G., Endo K., Zong L., Davis R. L., P{Switch}, a system for spatial and temporal control of gene expression in PubMed PMC

Ramirez C. E., Nouzova M., Michalkova V., Fernandez-Lima F., Noriega F. G., Common structural features facilitate the simultaneous identification and quantification of the five most common juvenile hormones by liquid chromatography-tandem mass spectrometry. Insect Biochem Mol Biol 116, 103287 (2020). PubMed PMC

Kurogi Y. et al. , Female reproductive dormancy in PubMed DOI PMC

Karpac J., Hull-Thompson J., Falleur M., Jasper H., JNK signaling in insulin-producing cells is required for adaptive responses to stress in Drosophila. Aging Cell 8, 288–295 (2009) PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...