Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin and juvenile hormone
Status PubMed-not-MEDLINE Language English Country United States Media electronic
Document type Journal Article, Preprint
Grant support
R01 AG059563
NIA NIH HHS - United States
R21 AI167849
NIAID NIH HHS - United States
R37 AG024360
NIA NIH HHS - United States
PubMed
38979180
PubMed Central
PMC11230353
DOI
10.1101/2024.06.26.600832
PII: 2024.06.26.600832
Knihovny.cz E-resources
- Keywords
- PYY, aging, incretins, insulin, interorgan communication, juvenile hormone,
- Publication type
- Journal Article MeSH
- Preprint MeSH
Dietary restriction slows aging in many animals, while in some cases the sensory signals from diet alone are sufficient to retard or accelerate lifespan. The digestive tract is a candidate location to sense nutrients, where neuropeptides secreted by enteroendocrine cells (EEC) produce systemic signals in response to food. Here we measure how Drosophila neuropeptide F (NPF) is secreted into adult circulation by enteroendocrine cells and find that specific enteroendocrine cells differentially respond to dietary sugar and yeast. Lifespan is increased when gut NPF is genetically depleted, and this manipulation is sufficient to blunt the longevity benefit conferred by dietary restriction. Depletion of NPF receptors at insulin producing neurons of the brain also increases lifespan, consistent with observations where loss of gut NPF decreases neuronal insulin secretion. The longevity conferred by repressing gut NPF and brain NPF receptors is reversed by treating adults with a juvenile hormone (JH) analog. JH is produced by the adult corpora allata, and inhibition of the insulin receptor at this tissue decreases JH titer and extends lifespan, while this longevity is restored to wild type by treating adults with a JH analog. Overall, enteroendocrine cells of the gut modulate Drosophila aging through interorgan communication mediated by a gut-brain-corpora allata axis, and insulin produced in the brain impacts lifespan through its control of JH titer. These data suggest that we should consider how human incretins and their analogs, which are used to treat obesity and diabetes, may impact aging.
Department of Ecology Evolution and Organismal Biology Brown University Providence RI 02912 USA
Department of Parasitology University of South Bohemia České Budějovice 37005 Czech Republic
Institute of Parasitology Biology Centre CAS České Budějovice Czech Republic 37005
See more in PubMed
Gribble F. M., Reimann F., Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat Rev Endocrinol 15, 226–237 (2019). PubMed
Beumer J. et al., High-Resolution mRNA and secretome atlas of human enteroendocrine cells. Cell 182, 1062–1064 (2020). PubMed
Afroze S. et al., The physiological roles of secretin and its receptor. Ann Transl Med 1, 29 (2013). PubMed PMC
Mendieta-Zeron H., Lopez M., Dieguez C., Gastrointestinal peptides controlling body weight homeostasis. Gen Comp Endocrinol 155, 481–495 (2008). PubMed
Seino Y., Fukushima M., Yabe D., GIP and GLP-1, the two incretin hormones: Similarities and differences. J Diabetes Investig 1, 8–23.(2010). PubMed PMC
Holst J. J., The physiology of glucagon-like peptide 1. Physiol Rev 87, 1409–1439 (2007). PubMed
Andersen A., Lund A., Knop F. K., Vilsboll T., Glucagon-like peptide 1 in health and disease. Nat Rev Endocrinol 14, 390–403 (2018). PubMed
Sharma D., Verma S., Vaidya S., Kalia K., Tiwari V., Recent updates on GLP-1 agonists: Current advancements & challenges. Biomed Pharmacother 108, 952–962 (2018). PubMed
Spector R., A revolution in the treatment of obesity. Am J Med 10.1016/j.amjmed.2024.05.023 (2024). PubMed DOI
Garcia-Arraras J. E., Lefebre-Rivera M., Qi-Huang S., Enteroendocrine cells in the Echinodermata. Cell Tissue Res 377, 459–467 (2019). PubMed
Wegener C., Veenstra J. A., Chemical identity, function and regulation of enteroendocrine peptides in insects. Curr Opin Insect Sci 11, 8–13 (2015). PubMed
Guo X., Lv J., Xi R., The specification and function of enteroendocrine cells in Drosophila and mammals: a comparative review. FEBS J 289, 4773–4796 (2022). PubMed
Verhaert P. et al., Dual location of neuropeptide F in the central nervous system and midgut of the fruitfly Drosophila melanogaster. Belgian Journal of Zoology 123, 86–87 (1993).
Veenstra J. A., Agricola H. J., Sellami A., Regulatory peptides in fruit fly midgut. Cell Tissue Res 334, 499–516 (2008). PubMed
Hung R.J. et al., A cell atlas of the adult Drosophila midgut. Proc Natl Acad Sci USA 117, 1514–1523(2020). PubMed PMC
Reiher W. et al., Peptidomics and peptide hormone processing in the Drosophila midgut. J Proteome Res 10, 1881–1892 (2011). PubMed
Nassel D. R., Winther A. M., Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol 92, 42–104 (2010). PubMed
Amcheslavsky A. et al., Enteroendocrine cells support intestinal stem-cell-mediated homeostasis in Drosophila. Cell Rep 9, 32–39 (2014). PubMed PMC
Scopelliti A. et al., Local control of intestinal stem cell homeostasis by enteroendocrine cells in the adult Drosophila midgut. Curr Biol 24, 1199–1211 (2014). PubMed PMC
Talsma A. D. et al., Remote control of renal physiology by the intestinal neuropeptide pigment-dispersing factor in Drosophila. Proc Natl Acad Sci USA 109, 12177–12182 (2012). PubMed PMC
Okamoto N., Watanabe A., Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly (Austin) 16, 152–176 (2022). PubMed PMC
Wahlestedt C., Reis D. J., Neuropeptide Y-related peptides and their receptors--are the receptors potential therapeutic drug targets? Annu Rev Pharmacol Toxicol 33, 309–352 (1993). PubMed
Brown M. R. et al., Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 20, 1035–1042 (1999). PubMed
Li X. J., Wu Y. N., North R. A., Forte M., Cloning, functional expression, and developmental regulation of a neuropeptide Y receptor from Drosophila melanogaster. J Biol Chem 267, 9–12 (1992). PubMed
Ameku T., Niwa R., Mating-induced increase in germline stem cells via the neuroendocrine system in female Drosophila. PLoS Genet 12, e1006123 (2016). PubMed PMC
Malita A. et al., A gut-derived hormone suppresses sugar appetite and regulates food choice in Drosophila. Nat Metab 4, 1532–1550 (2022). PubMed PMC
Yoshinari Y. et al., The sugar-responsive enteroendocrine neuropeptide F regulates lipid metabolism through glucagon-like and insulin-like hormones in Drosophila melanogaster. Nat Commun 12, 4818 (2021). PubMed PMC
Wen T., Parrish C. A., Xu D., Wu Q., Shen P., Drosophila neuropeptide F and its receptor, NPFR1, define a signaling pathway that acutely modulates alcohol sensitivity. Proc Natl Acad Sci USA 102, 2141–2146 (2005). PubMed PMC
Krause S. A., Overend G., Dow J. A. T., Leader D. P., FlyAtlas 2 in 2022: enhancements to the Drosophila melanogaster expression atlas. Nucleic Acids Res 50, D1010–D1015 (2022). PubMed PMC
Tatar M. et al., A mutant Drosophila insulin receptor homolog that extends lifespan and impairs neuroendocrine function. Science 292, 107–110 (2001). PubMed
Broughton S. J. et al., DILP-producing median neurosecretory cells in the Drosophila brain mediate the response of lifespan to nutrition. Aging Cell 9, 336–346 (2010). PubMed PMC
Yamamoto R., Palmer M., Koski H., Curtis-Joseph N., Tatar M., Aging modulated by the Drosophila insulin receptor through distinct structure-defined mechanisms. Genetics 217 (2021). PubMed PMC
Gao J. et al., Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion. Nat Commun 15, 3514 (2024). PubMed PMC
Droujinine I. A. et al., Proteomics of protein trafficking by in vivo tissue-specific labeling. Nat Commun 12, 2382 (2021). PubMed PMC
Chung B. Y. et al., Drosophila Neuropeptide F signaling independently regulates feeding and sleep-wake behavior. Cell Rep 19, 2441–2450 (2017). PubMed PMC
Masuyama K., Zhang Y., Rao Y., Wang J. W., Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J Neurogenet 26, 89–102 (2012). PubMed PMC
Sidhu S. S., Thompson D. G., Warhurst G., Case R. M., Benson R. S., Fatty acid-induced cholecystokinin secretion and changes in intracellular Ca2+ in two enteroendocrine cell lines, STC-1 and GLUTag. J Physiol 528, 165–176 (2000). PubMed PMC
Ameku T. et al., Midgut-derived neuropeptide F controls germline stem cell proliferation in a mating-dependent manner. PLoS Biol 16, e2005004 (2018). PubMed PMC
Yamamoto R., Bai H., Dolezal A. G., Amdam G., Tatar M., Juvenile hormone regulation of Drosophila aging. BMC Biol 11, 85 (2013). PubMed PMC
Abdou M. A. et al., Drosophila Met and Gce are partially redundant in transducing juvenile hormone action. Insect Biochem Mol Biol 41, 938–945 (2011). PubMed
Wang C., Zhang J., Tobe S. S., Bendena W. G., Defining the contribution of select neuropeptides and their receptors in regulating sesquiterpenoid biosynthesis by Drosophila melanogaster ring gland/corpus allatum through RNAi analysis. Gen Comp Endocrinol 176, 347–353 (2012). PubMed
Belgacem Y. H., Martin J. R., Hmgcr in the corpus allatum controls sexual dimorphism of locomotor activity and body size via the insulin pathway in Drosophila. PLoS One 2, e187 (2007). PubMed PMC
Rivera-Pérez C., Clifton M. E., Noriega F. G., Jindra M. (2020) Juvenile hormone regulation and action. in Advances in Invertebrate (Neuro)Endocrinology: A Collection of Reviews in the Post-Genomic Era, eds Saleuddin S., Lange A. B., Orchard I. (Apple Academic Press; ), pp 76.
Bendena W.G., Hui J. H. L., Chin-Sang I., Tobe S. S., Neuropeptide and microRNA regulators of juvenile hormone production. Gen Comp Endocrinol. 295,113507 (2020). PubMed
Zhang C. et al., The neuropeptide allatostatin C from clock-associated DN1p neurons generates the circadian rhythm for oogenesis. Proc Natl Acad Sci USA 118, e2016878118 (2021). PubMed PMC
Meiselman M. et al., Endocrine network essential for reproductive success in Drosophila melanogaster. Proc Natl Acad Sci USA 114, E3849–E3858 (2017). PubMed PMC
Zhang C., Kim A. J., Rivera-Perez C., Noriega F. G., Kim Y. J., The insect somatostatin pathway gates vitellogenesis progression during reproductive maturation and the post-mating response. Nat Commun 13, 969 (2022). PubMed PMC
Lee S. S., Adams M. E., Regulation of Drosophila long-term courtship memory by Ecdysis Triggering Hormone. Frontiers in Neuroscience 15, 10.3389/fnins.2021.670322 (2021). PubMed DOI PMC
Lee K. P. et al., Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc Natl Acad Sci USA 105, 2498–2503 (2008). PubMed PMC
Tatar M., Post S., Yu K., Nutrient control of Drosophila longevity. Trends Endocrinol Metab 25, 509–17. (2014). PubMed PMC
Gendron C. M. et al., Drosophila lifespan and physiology are modulated by sexual perception and reward. Science 343, 544–548 (2014). PubMed PMC
Tu M. P., Yin C. M., Tatar M., Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen Comp Endocrinol 142, 347–356 (2005). PubMed
Bownes M., The roles for juvenile hormone, ecdysone and the ovary in the control of Drosophila vitellogenesis. J Insect Physiol 35, 409–413 (1989).
Reiff T. et al., Endocrine remodeling of the adult intestine sustains reproduction in Drosophila. Elife 4, e06930 (2015). PubMed PMC
Nässel D. R., Kubrak O.I., Liu Y., Luo J., Lushchak O.V., Factors that regulate insulin producing cells and their output in Drosophila. Front Physiol. 17, 252 (2013). PubMed PMC
Ahmed S. M. H. et al., Fitness trade-offs incurred by ovary-to-gut steroid signaling in Drosophila. Nature 584, 415–419 (2020). PubMed PMC
Tatar M., Yin C.-M., Slow aging during insect reproductive diapause: why butterflies, grasshoppers and flies are like worms. Experimental Gerontology 336, 723–738 (2001). PubMed
Kim H. S. et al., Early-adulthood spike in protein translation drives aging via juvenile hormone/germline signaling. Nat Commun 14, 5021 (2023). PubMed PMC
Flatt T., Moroz L. L., Tatar M., Heyland A., Comparing thyroid and insect hormone signaling. Integr Comp Biol 46, 777–794 (2006). PubMed
Holzer P., Reichmann F., Farzi A., Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut–brain axis. Neuropeptides 46, 261–274 (2012). PubMed PMC
Engelstoft M. S., Egerod K. L., Lund M. L., Schwartz T. W., Enteroendocrine cell types revisited. Curr Opin Pharmacol 13, 912–921 (2013). PubMed
Botelho M., Cavadas C., Neuropeptide Y: An anti-aging player? Trends Neurosci 38, 701–711 (2015). PubMed
Tovar S. A. et al., Regulation of peptide YY levels by age, hormonal, and nutritional status. Obes Res 12, 1944–1950 (2004). PubMed
van Heemst D., The ageing thyroid: implications for longevity and patient care. Nat Rev Endocrinol 20, 5–15 (2024). PubMed
Boey D., Sainsbury A., Herzog H., The role of peptide YY in regulating glucose homeostasis. Peptides 28, 390–395 (2007). PubMed
Boey D. et al., PYY transgenic mice are protected against diet-induced and genetic obesity. Neuropeptides 42, 19–30 (2008). PubMed
Roman G., Endo K., Zong L., Davis R. L., P{Switch}, a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc Natl Acad Sci USA 98, 12602–12607 (2001). PubMed PMC
Ramirez C. E., Nouzova M., Michalkova V., Fernandez-Lima F., Noriega F. G., Common structural features facilitate the simultaneous identification and quantification of the five most common juvenile hormones by liquid chromatography-tandem mass spectrometry. Insect Biochem Mol Biol 116, 103287 (2020). PubMed PMC
Kurogi Y. et al., Female reproductive dormancy in Drosophila is regulated by DH31-producing neurons projecting into the corpus allatum. Development 150, dev201186. doi:10.1242/dev.201186 (2023). PubMed DOI PMC
Karpac J., Hull-Thompson J., Falleur M., Jasper H., JNK signaling in insulin-producing cells is required for adaptive responses to stress in Drosophila. Aging Cell 8, 288–295 (2009) PubMed PMC