Effects of mating on female reproductive physiology in the insect model, Rhodnius prolixus, a vector of the causative parasite of Chagas disease
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R21 AI167849
NIAID NIH HHS - United States
PubMed
37729234
PubMed Central
PMC10545099
DOI
10.1371/journal.pntd.0011640
PII: PNTD-D-23-00443
Knihovny.cz E-zdroje
- MeSH
- Chagasova nemoc * MeSH
- kladení vajíček fyziologie MeSH
- lidé MeSH
- paraziti * MeSH
- Rhodnius * fyziologie MeSH
- rozmnožování MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The blood-sucking hemipteran Rhodnius prolixus is one of the main vectors of Chagas disease, a neglected tropical disease that affects several million people worldwide. Consuming a blood meal and mating are events with a high epidemiological impact since after each meal, mated females can lay fertile eggs that result in hundreds of offspring. Thus, a better knowledge of the control of R. prolixus reproductive capacity may provide targets for developing novel strategies to control vector populations, thereby reducing vector-host contacts and disease transmission. Here, we have used a combination of gene transcript expression analysis, biochemical assays, hormone measurements and studies of locomotory activity to investigate how mating influences egg development and egg laying rates in R. prolixus females. The results demonstrate that a blood meal increases egg production capacity and leads to earlier egg laying in mated females compared to virgins. Virgin females, however, have increased survival rate over mated females. Circulating juvenile hormone (JH) and ecdysteroid titers are increased in mated females, a process mainly driven through an upregulation of the transcripts for their biosynthetic enzymes in the corpus allatum and ovaries, respectively. Mated females display weaker locomotory activity compared to virgin females, mainly during the photophase. In essence, this study shows how reproductive output and behaviour are profoundly influenced by mating, highlighting molecular, biochemical, endocrine and behavioral features differentially expressed in mated and virgin R. prolixus females.
Department of Biology University of Toronto Mississauga Mississauga Canada
Department of Parasitology University of South Bohemia České Budějovice Czech Republic
Instituto de Investigaciones en Biodiversidad y Biotecnología Mar del Plata Buenos Aires Argentina
Instituto René Rachou Avenida Augusto de Lima Belo Horizonte MG Brazil
Zobrazit více v PubMed
Avaria A, Ventura-Garcia L, Sanmartino M, Van der Laat C. Population movements, borders, and Chagas disease. Mem Inst Oswaldo Cruz. 2022;17: e210151. doi: 10.1590/0074-02760210151 PubMed DOI PMC
WHO. Chagas disease (American trypanosomiasis). [Cited 2023 January 20]. Available from: https://www.who.int/health-topics/chagas-disease#tab=tab_1
Souza RCM, Gorla DE, Chame M, Jaramillo N, Monroy C, Diotaiuti L. Chagas disease in the context of the 2030 agenda: global warming and vectors. Mem Inst Oswaldo Cruz. 2022;117: e200479. doi: 10.1590/0074-02760200479 PubMed DOI PMC
Pérez-Molina JA, Molina I. Chagas disease. Lancet. 2018;391: 82–94. PubMed
Cecere MC, Gürtler RE, Canale D, Chuit R, Cohen JE. The role of the peridomiciliary area in the elimination of Triatoma infestans from rural Argentine communities. Rev Panam Salud Publica. 1997;4: 273–279. PubMed
Almeida CE, Oliveira HL, Correia N, Dornak LL, Gumiel M, Neiva VL, et al.. Dispersion capacity of Triatoma sherlocki, Triatoma juazeirensis and laboratory-bred hybrids. Acta Trop. 2012;122, 71–9. PubMed
Castillo-Neyra R, Barbu CM, Salazar R, Borrini K, Naquira C, Levy MZ. Host-seeking behavior and dispersal of Triatoma infestans, a vector of Chagas disease, under semi-field conditions. PLoS Negl Trop Dis. 2015;9: e3433. PubMed PMC
Abrahan L, Lopez P, Amelotti I, Cavallo MJ, Stariolo R, Catalá S, et al.. Activity levels of female Triatoma infestans change depending on physiological condition. Parasit Vectors. 2018;11: 534. PubMed PMC
Lobbia PA, Mougabure-Cueto G. Active dispersal in Triatoma infestans (Klug, 1834) (Hemiptera: Reduviidae: Triatominae): Effects of nutritional status, the presence of a food source and the toxicological phenotype. Acta Trop. 2020;204: 105345. PubMed
Nunes-da-Fonseca R, Berni M, Tobias-Santos V, Pane A, Araujo HM. Rhodnius prolixus: From classical physiology to modern developmental biology. Genesis. 2017;55. PubMed
Davey K. The interaction of feeding and mating in the hormonal control of egg production in Rhodnius prolixus. J Insect Physiol. 2007;53: 208–15. PubMed
Catalá SS, Noireau F, Dujardin J-P. Biology of Triatominae. In: Telleria J, Tibayrenc M, editors. Elsevier; 2017. pp. 145–167.
Atella GC, Gondim KC, Machado EA, Medeiros MN, Silva-Neto MA, Masuda H. Oogenesis and egg development in triatomines: a biochemical approach. An Acad Bras Cienc. 2005;77: 405–30. doi: 10.1590/s0001-37652005000300005 PubMed DOI
Wu Z, Yang L, He Q, Zhou S. Regulatory mechanisms of vitellogenesis in insects. Front Cell Dev Biol. 2021;8: 593613. doi: 10.3389/fcell.2020.593613 PubMed DOI PMC
Lange AB, Leyria J, Orchard I. The hormonal and neural control of egg production in the historically important model insect, Rhodnius prolixus: A review, with new insights in this post-genomic era. Gen Comp Endocrinol. 2022;321–322: 114030. PubMed
Truman JW. The Evolution of Insect Metamorphosis. Curr Biol. 2019;29: R1252–R1268. doi: 10.1016/j.cub.2019.10.009 PubMed DOI
Tsang S, Law S, Li C, Qu Z, Bendena WG, Tobe SS, et al.. Diversity of Insect Sesquiterpenoid Regulation. Front Genet. 2020;11: 1027. doi: 10.3389/fgene.2020.01027 PubMed DOI PMC
Wigglesworth VB. The function of the corpus allatum in the growth and reproduction of Rhodnius prolixus (Hemiptera). Q J Microsc Sci. 1936;79: 91–121.
Leyria J, Orchard I, Lange AB. Impact of JH signaling on reproductive physiology of the classical insect model, Rhodnius prolixus. Int J Mol Sci. 2022;23: 13832. PubMed PMC
Leyria J, Benrabaa S, Nouzova M, Noriega FG, Tose V, Fernandez-Lima F, et al.. Crosstalk between nutrition, insulin, juvenile hormone, and ecdysteroid signaling in the classical insect model, Rhodnius prolixus. Int J Mol Sci. 2023;24: 7. PubMed PMC
Leyria J, Orchard I, Lange AB. Transcriptomic analysis of regulatory pathways involved in female reproductive physiology of Rhodnius prolixus under different nutritional states. Sci Rep. 2020;10: 11431. PubMed PMC
Leyria J, Orchard I, Lange AB. The involvement of insulin/ToR signaling pathway in reproductive performance of Rhodnius prolixus. Insect Biochem Mol Biol. 2021;130: 103526. PubMed
Benrabaa SAM, Orchard I, Lange AB. The role of ecdysteroid in the regulation of ovarian growth and oocyte maturation in Rhodnius prolixus, a vector of Chagas disease. J Exp Biol. 2022;225: jeb244830. PubMed
Chiang RG, Chiang JA. Reproductive physiology in the blood feeding insect, Rhodnius prolixus, from copulation to the control of egg production. J Insect Physiol. 2017;97: 27–37. PubMed
Whitten MM, Facey PD, Del Sol R, Fernández-Martínez LT, Evans MC, Mitchell JJ, Bodger OG, Dyson PJ. Symbiont-mediated RNA interference in insects. Proc Biol Sci. 2016;283: 20160042. doi: 10.1098/rspb.2016.0042 PubMed DOI PMC
Davey KG. Copulation and egg-production in Rhodnius prolixus: the role of the spermathecae. J Exp Biol. 1965;42: 373–378.
Pratt GE, Davey KG. The corpus allatum and oogenesis in Rhodnius prolixus (Stål.): iii. The effect of mating. J. Exp. Biol. 1972;56: 223–237.
De Loof A. Longevity and aging in insects: Is reproduction costly; cheap; beneficial or irrelevant? A critical evaluation of the “trade-off” concept. J Insect Physiol. 2011;57: 1–11. doi: 10.1016/j.jinsphys.2010.08.018 PubMed DOI
Orchard I, Leyria J, Al-Dailami A, Lange AB. Fluid secretion by Malpighian tubules of Rhodnius prolixus: Neuroendocrine control with new insights from a transcriptome analysis. Front Endocrinol (Lausanne). 2021;12: 722487. PubMed PMC
Houseman JG, Downe AER. Activity cycles and the control of four digestive proteinases in the posterior midgut of Rhodnius prolixus Stål (Hemiptera: Reduviidae). J Insect Physiol. 1983;29: 141–148.
Kunkel JG, Nordin JH.Yolk proteins. In: Kerkut GA, Gliberts LI, editors. Comprehensive insect physiology, biochemistry, and pharmacology. Oxford: Pergamon Press; 1985. pp. 83–111.
Raikhel AS, Dhadialla TS. Accumulation of yolk proteins in insect oocytes. Annu Rev Entomol. 1992;37: 217–251. doi: 10.1146/annurev.en.37.010192.001245 PubMed DOI
Noriega FG. Juvenile hormone biosynthesis in insects: What is new, what do we know, and what questions remain? Int Sch Res Notices. 2014;2014: 967361. doi: 10.1155/2014/967361 PubMed DOI PMC
Noriega FG, Nouzova M. Approaches and tools to study the roles of juvenile hormones in controlling insect biology. Insects. 2020;11: 858. doi: 10.3390/insects11120858 PubMed DOI PMC
Nouzova M, Edwards MJ, Michalkova V, Ramirez CE, Ruiz M, Areiza M, et al.. Epoxidation of juvenile hormone was a key innovation improving insect reproductive fitness. Proc Natl Acad Sci USA 2021;118: e2109381118. doi: 10.1073/pnas.2109381118 PubMed DOI PMC
Buxton PA. The biology of a blood-sucking bug, Rhodnius prolixus. Transactions of the Entomological Society London, 1930;78: 227–236.
Coles GC. Studies on the hormonal control of metabolism in Rhodnius prolixus Stål—I. The adult female. J Insect Physiol. 1965;11: 1325–1330. PubMed
Kriger FL, Davey KG. Ovarian motility in mated Rhodnius prolixus requires an intact cerebral neurosecretory system. Gen Comp Endocrinol. 1982;48: 130–134. PubMed
Davey KG, Maimets IK, Ruegg RP. The relationship between crop size and egg production in Rhodnius prolixus. Can J Zool 1986;64: 2654–2657.
Davey KG. Inputs to the hormonal control of egg development in Rhodnius prolixus. Mem Inst Oswaldo Cruz. 1987;82: 103–108. PubMed
Wang Z, Davey K. The role of juvenile hormone in vitellogenin production in Rhodnius prolixus. J Insect Physiol. 1993;39: 471–476.
Davey KG, Singleton DM. Activation of egg production and the corpus allatum without feeding in the adult female of the insect Rhodnius prolixus. Invertebr Reprod Dev. 1989;16: 131–134.
Santos CG, Humann FC, Hartfelder K. Juvenile hormone signaling in insect oogenesis. Curr Opin Insect Sci. 2019;31: 43–48. doi: 10.1016/j.cois.2018.07.010 PubMed DOI
Ruegg RP, Kriger FL, Davey KG, Steel CGH. Ovarian ecdysone elicits release of a myotropic ovulation hormone in Rhodnius (Insecta: Hemiptera). Int J Invertebr Reprod. 1981;3: 357–361.
Cardinal-Aucoin M, Rapp N, Steel CG. Circadian regulation of hemolymph and ovarian ecdysteroids during egg development in the insect Rhodnius prolixus (Hemiptera). Comp Biochem Physiol A Mol Integr Physiol. 2013;166: 503–509. PubMed
Ruegg RP, Davey KG. The effect of C18 juvenile hormone and Altosid on the efficiency of egg production in Rhodnius prolixus. Int J Invertebr Reprod. 1979;1: 3–8.
Lynch SA, Mullen AM, O’Neill EE, García CÁ. Harnessing the potential of blood proteins as functional ingredients: A review of the state of the art in blood processing. Compr Rev Food Sci Food Saf. 2017;16: 330–344. doi: 10.1111/1541-4337.12254 PubMed DOI
Wigglesworth VB. The hormonal regulation of growth and reproduction in insects. Adv Insect Physiol. 1964;2: 247–336.
Edward DA, Chapman T. Mechanisms underlying reproductive trade-offs: Costs of reproduction. In: Flatt T, Heyland A, editors. Mechanisms of Life History Evolution: The Genetics and Physiology of Life History Traits and Trade-Offs. Oxford University Press; 2011. pp. 137–152.
Schwenke RA, Lazzaro BP, Wolfner MF. Reproduction-immunity trade-offs in insects. Annu Rev Entomol. 2016;61: 239–256. doi: 10.1146/annurev-ento-010715-023924 PubMed DOI PMC
Nanfack-Minkeu F, Sirot LK. Effects of mating on gene expression in female insects: Unifying the field. Insects. 2022;13: 69. doi: 10.3390/insects13010069 PubMed DOI PMC
Bell WJ. Searching behavior patterns in insects. Annu Rev Entomol. 1990;35: 447–467.
Lorenzo MG, Lazzari CR. Activity pattern in relation to refuge exploitation and feeding in Triatoma infestans (Hemiptera: Reduviidae). Acta Trop. 1998;70: 163–170. PubMed
Leis M, Lazzari CR. Blood as fuel: the metabolic cost of pedestrian locomotion in Rhodnius prolixus. J Exp Biol. 2021;224: jeb227264. PubMed
Andrade LC, Majerowicz D, Oliveira PL, Guarneri AA. Trypanosoma rangeli Manipulates Energy Metabolism of its Vector, Rhodnius prolixus. SSRN:4431392 [Preprint]. 2023. [cited 2023 June 03]. Available from: https://ssrn.com/abstract=4431392 PubMed
Marliére NP, Lorenzo MG, Guarneri AA. Trypanosoma rangeli infection increases the exposure and predation endured by Rhodnius prolixus. Parasitology. 2022;149: 155–160. PubMed PMC
Leyria J, Orchard I, Lange AB. What happens after a blood meal? A transcriptome analysis of the main tissues involved in egg production in Rhodnius prolixus, an insect vector of Chagas disease. PLoS Negl Trop Dis. 2020. b;14: e0008516. PubMed PMC
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method Nat Protoc. 2008;3: 1101–1108. PubMed
Ramirez CE, Nouzova M, Michalkova V, Fernandez-Lima F, Noriega FG. Common structural features facilitate the simultaneous identification and quantification of the five most common juvenile hormones by liquid chromatography-tandem mass spectrometry. Insect Biochem Mol Biol. 2020;116: 103287. doi: 10.1016/j.ibmb.2019.103287 PubMed DOI PMC
Villalobos-Sambucaro MJ, Nouzova M, Ramirez CE, Eugenia Alzugaray M, Fernandez-Lima F, Ronderos JR, et al.. The juvenile hormone described in Rhodnius prolixus by Wigglesworth is juvenile hormone III skipped bisepoxide. Sci Rep. 2020;10: 3091. PubMed PMC
Abuhagr AM, Blindert JL, Nimitkul S, Zander IA, Labere SM, Chang SA, et al.. Molt regulation in green and red color morphs of the crab Carcinus maenas: Gene expression of molt-inhibiting hormone signaling components. J Exp Biol. 2014;217: 796–808. PubMed
Marliére NP, Latorre-Estivalis JM, Lorenzo MG, Carrasco D, Alves-Silva J, Rodrigues Jde O, et al.. Trypanosomes modify the behavior of their insect hosts: Effects on locomotion and on the expression of a related gene. PLoS Negl Trop Dis. 2015;9: e0003973. doi: 10.1371/journal.pntd.0003973 PubMed DOI PMC