The juvenile hormone described in Rhodnius prolixus by Wigglesworth is juvenile hormone III skipped bisepoxide

. 2020 Feb 20 ; 10 (1) : 3091. [epub] 20200220

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32080221

Grantová podpora
R21AI135469 NIH HHS - United States
R01AI045545 NIH HHS - United States

Odkazy

PubMed 32080221
PubMed Central PMC7033181
DOI 10.1038/s41598-020-59495-1
PII: 10.1038/s41598-020-59495-1
Knihovny.cz E-zdroje

Juvenile hormones (JHs) are sesquiterpenoids synthesized by the corpora allata (CA). They play critical roles during insect development and reproduction. The first JH was described in 1934 as a "metamorphosis inhibitory hormone" in Rhodnius prolixus by Sir Vincent B. Wigglesworth. Remarkably, in spite of the importance of R. prolixus as vectors of Chagas disease and model organisms in insect physiology, the original JH that Wigglesworth described for the kissing-bug R. prolixus remained unidentified. We employed liquid chromatography mass spectrometry to search for the JH homologs present in the hemolymph of fourth instar nymphs of R. prolixus. Wigglesworth's original JH is the JH III skipped bisepoxide (JHSB3), a homolog identified in other heteropteran species. Changes in the titer of JHSB3 were studied during the 10-day long molting cycle of 4th instar nymph, between a blood meal and the ecdysis to 5th instar. In addition we measured the changes of mRNA levels in the CA for the 13 enzymes of the JH biosynthetic pathway during the molting cycle of 4th instar. Almost 90 years after the first descriptions of the role of JH in insects, this study finally reveals that the specific JH homolog responsible for Wigglesworth's original observations is JHSB3.

Zobrazit více v PubMed

Wigglesworth VB. The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and ‘metamorphosis’. Q. J. Microscopical Science. 1934;77:191–222.

Wigglesworth VB. The function of the corpus allatum in the growth and reproduction of Rhodnius prolixus (Hemiptera) Q. J. Microscopical Science. 1936;79:91–121.

Wigglesworth VB. The determination of characters at metamorphosis in Rhodnius prolixus (Hemiptera) J. Experim. Biol. 1940;17:201–223.

Wigglesworth VB. The functions of the corpus allatum in Rhodnius prolixus (Hemiptera) J. Experim. Biol. 1948;25:1–14.

Röller H, Dahms KH, Sweely CC, Trost BM. The structure of the juvenile hormone. Angew. Chem. Int. Edition. 1967;6:1966–1967.

Meyer AS, Schneiderman HA, Hanzmann E, Ko JH. The two juvenile hormones from the Cecropia silk moth. Proc. Natl Acad. Sci. USA. 1968;60:853–860. doi: 10.1073/pnas.60.3.853. PubMed DOI PMC

Judy KJ, et al. Isolation, structure, and absolute configuration of a new natural insect juvenile hormone from Manduca sexta. Proc. Natl Acad. Sci. USA. 1973;70:1509–1513. doi: 10.1073/pnas.70.5.1509. PubMed DOI PMC

Richard DS, et al. Juvenile hormone bisepoxide biosynthesis in vitro by the ring gland of Drosophila melanogaster: a putative juvenile hormone in the higher Diptera. Proc. Natl Acad. Sci. USA. 1989;86:1421–1425. doi: 10.1073/pnas.86.4.1421. PubMed DOI PMC

Kotaki T, Shinada T, Kaihara K, Ohfune Y, Numata H. Structure determination of a new juvenile hormone from a Heteropteran insect. Org. Letters. 2009;11:5234–5237. doi: 10.1021/ol902161x. PubMed DOI PMC

Kotaki T, Shinada T, Kaihara K, Ohfune Y, Numata H. Biological activities of juvenile hormone III skipped bisepoxide in last instar nymphs and adults of a stink bug, Plautia stali. J. Insect Physiol. 2011;57:147–152. doi: 10.1016/j.jinsphys.2010.10.003. PubMed DOI

Rivera-Perez, C., Nouzova, M. & Noriega, F. G. New approaches to study juvenile hormone biosynthesis in insects. In: Short views on insect biochemistry and molecular biology. Chapter 7, 185–216 (2014).

Ramirez CE, et al. Fast, ultra-trace detection of juvenile hormone III from mosquitoes using mass spectrometry. Talanta. 2016;159:371–378. doi: 10.1016/j.talanta.2016.06.041. PubMed DOI PMC

Ramirez CE, et al. Common structural features facilitate the simultaneous identification and quantification of the five most common juvenile hormones by liquid chromatography-tandem mass spectrometry. Insect Biochem. Molec. Biol. 2020;116:103287. doi: 10.1016/j.ibmb.2019.103287. PubMed DOI PMC

Hejnikova M, Paroulek M, Hodkova M. Decrease in Methoprene tolerant and Taiman expression reduces juvenile hormone effect and enhances the levels of juvenile hormone circulating in males of the linden bug Pyrrhocoris apterus. J. Insect Physiol. 2016;93–94:72–80. doi: 10.1016/j.jinsphys.2016.08.009. PubMed DOI

Mesquita RD, et al. The genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc. Natl Acad. Sci. USA. 2015;112:14936–14941. doi: 10.1073/pnas.1506226112. PubMed DOI PMC

Mayoral JG, Nouzova M, Navare A, Noriega FG. NADP+-dependent farnesol dehydrogenase, a corpora allata enzyme involved in juvenile hormone synthesis. Proc. Natl Acad. Sci. USA. 2009;106:21091–21096. doi: 10.1073/pnas.0909938106. PubMed DOI PMC

Schuh RT, Weirauch C, Wheeler WC. Phylogenetic relationships within the Cimicomorpha (Hemiptera: Heteroptera): a total-evidence analysis. Syst. Entomol. 2009;34:15–48. doi: 10.1111/j.1365-3113.2008.00436.x. DOI

Rivera-Pérez, C., Clifton, M. E., Noriega, F. G. & Jindra, M. Juvenile hormone regulation and action. Advances in Invertebrate (Neuro) Endocrinology. Apple Academic Press, Inc., Oakville, Canada. Editors: Saber Saleuddin, Angela, B. Lange, Ian, Orchard. Vol. 2, 1–76 (2020).

Schooley DA, Judy KJ, Bergot BJ, Hall MS, Siddall JB. Biosynthesis of the juvenile hormones of Manduca sexta: labeling pattern from mevalonate, propionate, and acetate. Proc. Natl. Acad. Sci. USA. 1973;70:2921–2925. doi: 10.1073/pnas.70.10.2921. PubMed DOI PMC

Eiben, C. B. et al. Mevalonate pathway promiscuity enables noncanonical terpene production. ACS Synth. Biol. In press (2019). PubMed

Noriega Fernando G. Juvenile Hormone Biosynthesis in Insects: What Is New, What Do We Know, and What Questions Remain? International Scholarly Research Notices. 2014;2014:1–16. doi: 10.1155/2014/967361. PubMed DOI PMC

Nyati P, et al. Farnesyl phosphatase, a corpora allata enzyme involved in juvenile hormone synthesis in Aedes aegypti. PLoS ONE. 2013;8(8):e71967. doi: 10.1371/journal.pone.0071967. PubMed DOI PMC

Rivera-Perez C, et al. Aldehyde dehydrogenase 3 converts farnesal into farnesoic acid in the corpora allata of mosquitoes. Insect Biochem. Molec. Biol. 2013;43:675–682. doi: 10.1016/j.ibmb.2013.04.002. PubMed DOI PMC

Helvig C, Koener JF, Unnithan GC, Feyereisen R. CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proc. Natl. Acad. Sci. USA. 2004;101:4024–4029. doi: 10.1073/pnas.0306980101. PubMed DOI PMC

Daimon T, Shinoda T. Function, diversity, and application of insect juvenile hormone epoxidases (CYP15) Biotechnol. Appl. Biochem. 2013;60:82–91. doi: 10.1002/bab.1058. PubMed DOI

Daimon T, et al. Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori. PLoS Genet. 2012;8(3):e1002486. doi: 10.1371/journal.pgen.1002486. PubMed DOI PMC

Nouzova M, Edwards MJ, Mayoral JG, Noriega FG. A coordinated expression of biosynthetic enzyme controls the flux of juvenile hormone precursors in the corpora allata of mosquitoes. Insect Biochem. Mol. Biol. 2011;41:660–669. doi: 10.1016/j.ibmb.2011.04.008. PubMed DOI PMC

Kinjoh T, et al. Control of juvenile hormone biosynthesis in Bombyx mori: Cloning of the enzymes in the mevalonate pathway and assessment of their developmental expression in the corpora allata. Insect Biochem. Mol. Biol. 2007;37:807–818. doi: 10.1016/j.ibmb.2007.03.008. PubMed DOI

Ueda H, Shinoda T, Hiruma K. Spatial expression of the mevalonate enzymes involved in juvenile hormone biosynthesis in the corpora allata in Bombyx mori. J. Insect Physiol. 2009;55:798–804. doi: 10.1016/j.jinsphys.2009.04.013. PubMed DOI

Huang J, Marchal E, Hult EF, Tobe SS. Characterization of the juvenile hormone pathway in the viviparous cockroach, Diploptera punctata. PLoS One. 2015;10:e0117291. doi: 10.1371/journal.pone.0117291. PubMed DOI PMC

Marchal E, et al. Final steps in juvenile hormone biosynthesis in the desert locust, Schistocerca gregaria. Insect Biochem. Mol. Biol. 2011;41:219–227. doi: 10.1016/j.ibmb.2010.12.007. PubMed DOI

Wigglesworth VB. Hormone balance and the control of metamorphosis in Rhodnius prolixus (Hemiptera) J. exp. Biol. 1952;29:620–631.

Baehr JC, Porcheron P, Dray F. Dosages radio-immunologiques des hormones juveniles au tours des deux derniers stades larvaires de Rhodnius prolixus. C. R. H. S. Acad. Sci., Paris. 1978;281:523–526.

Garcia ES, Uhl M, Rembold H. Azadirachtin, a chemical probe for the study of moulting processes in Rhodnius prolixus. Z. Naturforsch. 1986;41:771–775. doi: 10.1515/znc-1986-7-817. DOI

Garcia ES, Furtado AF, De Azambuja P. Effect of allatectomy on ecdysteroid-dependent development of Rhodnius prolixus larvae. J. Insect Physiol. 1987;33:729–732. doi: 10.1016/0022-1910(87)90058-8. DOI

Tobe SS, Stay B. Structure and regulation of the corpus allatum. Adv. Insect Physiol. 1985;18:305–431. doi: 10.1016/S0065-2806(08)60043-0. DOI

Marchal E, et al. Control of ecdysteroidogenesis in prothoracic glands of insects: A review. Peptides. 2010;31:506–519. doi: 10.1016/j.peptides.2009.08.020. PubMed DOI

Ou Q, et al. The insect prothoracic gland as a model for steroid hormone biosynthesis and regulation. Cell Rep. 2016;16:247–262. doi: 10.1016/j.celrep.2016.05.053. PubMed DOI PMC

Jindra, M. Where did the pupa come from? The timing of juvenile hormone signaling supports homology between stages of hemimetabolous and holometabolous insects. Phil. Trans. R. Soc. B. 374, 20190064 (2019). PubMed PMC

Villalobos Sambucaro MJ, et al. Genomic and functional characterization of a methoprene-tolerant gene in the kissing-bug Rhodnius prolixus. Gen. Comp. Endocrinol. 2015;216:1–8. doi: 10.1016/j.ygcen.2015.04.018. PubMed DOI

Bowers WS, Ohta T, Cleere JS, Marsella PA. Discovery of insect anti-juvenile hormone in plants. Sci. 1976;193:542–541. doi: 10.1126/science.986685. PubMed DOI

Ronderos JR. Changes in the corpora allata and epidermal proliferation along the fourth instar of the Chagas disease vector Triatoma infestans. Bio. Cell. 2009;33:149–154. PubMed

Wigglesworth VB. The significance of “apolysis” in the moulting of insects. Physiological. Entomol. 1973;47:115–209.

Nouzova M, Michalkova V, Ramirez CE, Fernandez-Lima F, Noriega FG. Inhibition of juvenile hormone synthesis in mosquitoes by the methylation inhibitor 3-deazaneplanocin A (DZNep) Insect Biochem. Mol. Biol. 2019;113:103183. doi: 10.1016/j.ibmb.2019.103183. PubMed DOI PMC

Giraldo-Calderón Gloria I., Emrich Scott J., MacCallum Robert M., Maslen Gareth, Dialynas Emmanuel, Topalis Pantelis, Ho Nicholas, Gesing Sandra, Madey Gregory, Collins Frank H., Lawson Daniel. VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic Acids Research. 2014;43(D1):D707–D713. doi: 10.1093/nar/gku1117. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...