Inhibition of juvenile hormone synthesis in mosquitoes by the methylation inhibitor 3-deazaneplanocin A (DZNep)

. 2019 Oct ; 113 () : 103183. [epub] 20190629

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid31265905

Grantová podpora
R01 AI045545 NIAID NIH HHS - United States

Odkazy

PubMed 31265905
PubMed Central PMC6733609
DOI 10.1016/j.ibmb.2019.103183
PII: S0965-1748(19)30220-6
Knihovny.cz E-zdroje

Juvenile hormone (JH), synthesized by the corpora allata (CA), controls development and reproduction in mosquitoes through its action on thousands of JH-responsive genes. These JH-dependent processes can be studied using tools that increase or decrease JH titers in vitro and in vivo. Juvenile hormone acid methyl transferase (JHAMT) is a critical JH biosynthetic enzyme. JHAMT utilizes the methyl donor S-adenosyl-methionine (SAM) to methylate farnesoic acid (FA) into methyl farnesoate (MF), releasing the product S-adenosyl-L-homocysteine (AdoHcy), which inhibits JHAMT. S-adenosyl-homocysteine hydrolase (SAHH) catalyzes AdoHcy hydrolysis to adenosine and homocysteine, alleviating AdoHcy inhibition of JHAMT. 3-deazaneplanocin A (DZNep), an analog of adenosine, is an inhibitor of SAHH, and an epigenetic drug for cancer therapy. We tested the effect of DZNep on in vitro JH synthesis by CA of mosquitoes. DZNep inhibited JH synthesis in a dose-response fashion. Addition of MF, but not of FA relieved the inhibition, demonstrating a direct effect on JHAMT. In vivo experiments, with addition of DZNep to the sugar ingested by mosquitoes, resulted in a dose-response decrease in JH synthesis and JH hemolymphatic titers, as well as expression of early trypsin, a JH-dependent gene. Our studies suggest that DZNep can be employed to lower JH synthesis and titer in experiments evaluating JH-controlled processes in mosquitoes.

Zobrazit více v PubMed

Bonning BC, Loher W, Hammock BD, 1997. Recombinant juvenile hormone esterase as a biochemical anti-juvenile hormone agent: effects on ovarian development in Acheta domesticus. Arch. Insect Biochem. Physiol 34, 359–368. PubMed

Bowers WS, Ohta T, Cleere JS & Marsella PA, 1976. Discovery of insect anti-juvenile hormones in plants. Science, 193, 542–547. PubMed

Bowers WS, Martinez-Pardo R, 1977. Antiallatotropins: inhibition of corpus allatum development. Science, 197, 1369–1371. PubMed

Brosnan JT, Brosnan ME, 2006. The sulfur-containing amino acids: an overview. J Nutr 136 (6 Suppl), 1636S–1640S. PubMed

Clifton ME, Noriega FG, 2012. The fate of follicles after a blood meal is dependent on previtellogenic nutrition and juvenile hormone in Aedes aegypti. J. Insect Physiol 58, 1007–1019. PubMed PMC

Converso A, et al. 2014. Adenosine analogue inhibitors of S-adenosylhomocysteine hydrolase. Bioorganic & Medicinal Chemistry Letters 24, 2737–2740. PubMed

Defelipe LA, Dolghih E, Roitberg AE, Nouzova M, Mayoral JG, Noriega FG, Turjanski AG, 2011. Juvenile hormone synthesis: “esterify then epoxidize” or “epoxidize then esterify”? Insights from the structural characterization of juvenile hormone acid methyltransferase. Insect Biochem. Mol. Biol 41, 228–235. PubMed PMC

Edgar K, Noriega FG, Bonning BC, Wells MA, 2000. Recombinant juvenile hormone esterase, an effective tool to modify juvenile hormone-dependent expression of the early trypsin gene in mosquitoes. Insect Molec. Biol 9, 27–31 PubMed

Feyereisen R, Ruegg RP, Tobe SS, 1984. Juvenile Hormone III biosynthesis, stoichiometric incorporation of [2–14C] acetate and effects on exogenous farnesol and farnesoic acid. Insect Biochem 14, 657–661.

Glazer RI, Knode MC, Tseng CKH, Haines DR, Marquez VE, 1986. 3-deazaneplanocin A: A new inhibitor of S-adenosylhomocysteine synthesis and its effects in human colon carcinoma cells. Biochem. Pharmacol 35, 4523–4527. PubMed

Goodman WG, Cusson M, 2012. The Juvenile Hormones. In Insect Endocrinology Gilbert LI (Ed.), San Diego: Academic Press; pp. 310–365.

Hernandez S, Lanz H, Rodriguez MH, Torres JA, Martinez-Palomo A, Tsutsumi V, 1999. Morphological and cytochemical characterization of female Anopheles albimanus (Diptera: Culicidae) hemocytes. J. Med. Entomol 36, 426–434. PubMed

Li YP, Hernandez-Martinez S, Unnithan GC, Feyereisen R, Noriega FG, 2003. Activity of the corpora allata of adult female Aedes aegypti: effects of mating and feeding. Insect Biochem. Mol. Biol 33, 1307–1315. PubMed

Martin JL, McMillan FM, 2002. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr. Op. Struct. Biol 12, 783–793. PubMed

Mayoral JG, et al., 2009. Molecular and functional characterization of a juvenile hormone acid methyltransferase expressed in the corpora allata of mosquitoes. Insect Biochem. Mol. Biol 39, 31–37. PubMed PMC

Noriega FG, Shah DK and Wells MA, 1997. Juvenile hormone controls early trypsin gene transcription in the midgut of Aedes aegypti. Insect Mol Biol 6, 63–66. PubMed

Noriega FG, 2014. Juvenile hormone biosynthesis in insects: What is new, what do we know, what questions remain? ISRN. 10.1155/2014/967361 PubMed DOI PMC

Nouzova M, Edwards MJ, Mayoral JG, Noriega FG, 2011. A coordinated expression of biosynthetic enzymes controls the flux of juvenile hormone precursors in the corpora allata of mosquitoes. Insect Biochem. Mol. Biol 41, 660–669. PubMed PMC

Philpott ML, Hammock BD, 1990. Juvenile hormone esterase is a biochemical anti-juvenile hormone agent. Insect Biochem 20, 451–459.

Pratt GE, Jennings RC, Hamnett AF, Brooks GT, 1980. Lethal metabolism of precocene-1 to a reactive epoxide by locust corpora allata. Nature 284, 320–323.

Ramirez CE, Nouzova M, Benigni P, Quirke JM, Noriega FG, Fernandez-Lima F, 2016. Fast, ultra-trace detection of juvenile hormone III from mosquitoes using mass spectrometry. Talanta 159, 371–8. PubMed PMC

Rivera-Perez C, Nouzova M, Lamboglia I, Noriega FG, 2014. Metabolomics Reveals Changes in the Mevalonate and Juvenile Hormone Synthesis Pathways. Insect Biochem. Mol. Biology 51, 1–9. PubMed PMC

Sharma A, Anderson TD, Sharakhov IV, 2015. Toxicological assays for testing effects of an epigenetic drug on development, fecundity and survivorship of malaria mosquitoes. J. Vis. Exp 95, e52041, doi:10.3791/52041. PubMed DOI PMC

Saha TT, et al., 2016. Hairy and Groucho mediate the action of juvenile hormone receptor Methoprene-tolerant in gene repression. Proc. Natl. Acad. Sci. USA 113, E735–743. PubMed PMC

Shinoda T, Itoyama K, 2003. Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis. Proc. Natl. Acad. Sci. USA 100, 11986–11991. PubMed PMC

Tobe SS, Pratt GE, 1974. The influence of substrate concentrations on the rate of insect juvenile hormone biosynthesis by corpora allata of the desert locust in vitro. Biochem. J 144, 107–113. PubMed PMC

Zhang J, Zheng YG, 2016. SAM/SAH analogs as versatile tools for SAM-dependent methyltransferases. ACS Chem. Biol 11, 583–597 PubMed PMC

Zhu J, Noriega FG, 2016. The role of juvenile hormone in mosquito development and reproduction. Adv. Insect Physiol. Progress in Mosquito Research Editor. Alex Raikhel. 51, 93–113.

Zou Z, et al., 2013. Juvenile hormone and its receptor, methoprene-tolerant, control the dynamics of mosquito gene expression. Proc. Natl. Acad. Sci. USA 110, E2173–2181. PubMed PMC

Ye et al., 2017, A Metabolic Function for Phospholipid and Histone Methylation. Molecular Cell 66, 180–193. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...