Colonization and genetic diversification processes of Leishmania infantum in the Americas
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
Wellcome Trust - United Kingdom
MR/M026353/1
Medical Research Council - United Kingdom
R15 AI077896
NIAID NIH HHS - United States
R15 AI105749
NIAID NIH HHS - United States
PubMed
33514858
PubMed Central
PMC7846609
DOI
10.1038/s42003-021-01658-5
PII: 10.1038/s42003-021-01658-5
Knihovny.cz E-resources
- MeSH
- Gene Deletion MeSH
- Phylogeny MeSH
- Genome, Protozoan * MeSH
- Leishmania infantum genetics pathogenicity MeSH
- Leishmaniasis, Visceral epidemiology parasitology transmission MeSH
- Molecular Epidemiology MeSH
- Evolution, Molecular * MeSH
- DNA, Protozoan genetics MeSH
- Genes, Protozoan * MeSH
- Sequence Deletion MeSH
- Whole Genome Sequencing MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Geographicals
- Brazil epidemiology MeSH
- Names of Substances
- DNA, Protozoan MeSH
Leishmania infantum causes visceral leishmaniasis, a deadly vector-borne disease introduced to the Americas during the colonial era. This non-native trypanosomatid parasite has since established widespread transmission cycles using alternative vectors, and human infection has become a significant concern to public health, especially in Brazil. A multi-kilobase deletion was recently detected in Brazilian L. infantum genomes and is suggested to reduce susceptibility to the anti-leishmanial drug miltefosine. We show that deletion-carrying strains occur in at least 15 Brazilian states and describe diversity patterns suggesting that these derive from common ancestral mutants rather than from recurrent independent mutation events. We also show that the deleted locus and associated enzymatic activity is restored by hybridization with non-deletion type strains. Genetic exchange appears common in areas of secondary contact but also among closely related parasites. We examine demographic and ecological scenarios underlying this complex L. infantum population structure and discuss implications for disease control.
Faculty of Science Department of Parasitology Charles University 128 44 Prague Czech Republic
Institut Pasteur Bioinformatics and Biostatistics Hub C3BI USR 3756 IP CNRS 75015 Paris France
Instituto de Bioquímica Médica Leopoldo de Meis 21941 590 Rio de Janeiro RJ Brazil
See more in PubMed
Petit RJ. Early insights into the genetic consequences of range expansions. Heredity. 2011;106:203–204. doi: 10.1038/hdy.2010.60. PubMed DOI PMC
Kolbe JJ, et al. Genetic variation increases during biological invasion by a Cuban lizard. Nature. 2004;431:177–181. doi: 10.1038/nature02807. PubMed DOI
Kuhls K, et al. Comparative microsatellite typing of new world Leishmania infantum reveals low heterogeneity among populations and its recent old world origin. PLoS Negl. Trop. Dis. 2011;5:e1155. doi: 10.1371/journal.pntd.0001155. PubMed DOI PMC
Leblois R, Kuhls K, François O, Schönian G, Wirth T. Guns, germs and dogs: on the origin of Leishmania chagasi. Infect. Genet. Evol. 2011;11:1091–1095. doi: 10.1016/j.meegid.2011.04.004. PubMed DOI
Gradoni L, Gramiccia M. Leishmania infantum tropism: strain genotype or host immune status? Parasitol. Today. 1994;10:264–267. doi: 10.1016/0169-4758(94)90142-2. PubMed DOI
Sulahian A, Garin YJ, Pratlong F, Dedet JP, Derouin F. Experimental pathogenicity of viscerotropic and dermotropic isolates of Leishmania infantum from immunocompromised and immunocompetent patients in a murine model. FEMS Immunol. Med. Microbiol. 1997;17:131–138. doi: 10.1111/j.1574-695X.1997.tb01005.x. PubMed DOI
Guerbouj S, Guizani I, Speybroeck N, Le Ray D, Dujardin JC. Genomic polymorphism of Leishmania infantum: a relationship with clinical pleomorphism? Infect. Genet. Evol. 2001;1:49–59. doi: 10.1016/S1567-1348(01)00008-9. PubMed DOI
Dumetz F, et al. Molecular preadaptation to antimony resistance in Leishmania donovani on the Indian subcontinent. mSphere. 2018;3:e00548–17. doi: 10.1128/mSphere.00548-17. PubMed DOI PMC
Imamura H, et al. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. eLife. 2016;5:e12613. doi: 10.7554/eLife.12613. PubMed DOI PMC
Ishikawa EAY, et al. Genetic variation in populations of Leishmania species in Brazil. Trans. R. Soc. Trop. Med. Hyg. 2002;96:S111–121. doi: 10.1016/S0035-9203(02)90061-1. PubMed DOI
Cupolillo E, et al. Genetic polymorphism and molecular epidemiology of Leishmania (Viannia) braziliensis from different hosts and geographic areas in Brazil. J. Clin. Microbiol. 2003;41:3126–3132. doi: 10.1128/JCM.41.7.3126-3132.2003. PubMed DOI PMC
Victoir K, Dujardin J-C. How to succeed in parasitic life without sex? Asking Leishmania. Trends Parasitol. 2002;18:81–85. doi: 10.1016/S1471-4922(01)02199-7. PubMed DOI
Barja PP, et al. Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nat. Ecol. Evol. 2017;1:1961–1969. doi: 10.1038/s41559-017-0361-x. PubMed DOI
Romano A, et al. Cross-species genetic exchange between visceral and cutaneous strains of Leishmania in the sand fly vector. Proc. Natl Acad. Sci. USA. 2014;111:16808–16813. doi: 10.1073/pnas.1415109111. PubMed DOI PMC
Cortes S, et al. In vitro and in vivo behaviour of sympatric Leishmania (V.) braziliensis, L. (V.) peruviana and their hybrids. Parasitology. 2012;139:191–199. doi: 10.1017/S0031182011001909. PubMed DOI
Akopyants NS, et al. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science. 2009;324:265–268. doi: 10.1126/science.1169464. PubMed DOI PMC
Volf P, et al. Increased transmission potential of Leishmania major/Leishmania infantum hybrids. Int. J. Parasitol. 2007;37:589–593. doi: 10.1016/j.ijpara.2007.02.002. PubMed DOI PMC
Schwenkenbecher JM, et al. Microsatellite analysis reveals genetic structure of Leishmania tropica. Int. J. Parasitol. 2006;36:237–246. doi: 10.1016/j.ijpara.2005.09.010. PubMed DOI
Akhoundi M, et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl. Trop. Dis. 2016;10:e0004349. doi: 10.1371/journal.pntd.0004349. PubMed DOI PMC
Lainson, R. & Shaw, J. J. in Topley & Wilson’s Microbiology and Microbial Infections, 10.1002/9780470688618.taw0182 (American Cancer Society, 2010).
Satragno D, et al. Autochthonous outbreak and expansion of canine visceral leishmaniasis, Uruguay. Emerg. Infect. Dis. 2017;23:536–538. doi: 10.3201/eid2303.160377. PubMed DOI PMC
Brazil & Departamento de Vigilância Epidemiológica. Manual de vigilância e controle da leishmaniose visceral (Editora MS, 2003).
Bern, C., Maguire, J. H. & Alvar, J. Complexities of assessing the disease burden attributable to leishmaniasis. PLoS Negl. Trop. Dis. 2, e313 (2008). PubMed PMC
Belli A, et al. Widespread atypical cutaneous Leishmaniasis caused by Leishmania (L.) chagasi in Nicaragua. Am. J. Trop. Med. Hyg. 1999;61:380–385. doi: 10.4269/ajtmh.1999.61.380. PubMed DOI
De Lima H, et al. Cutaneous leishmaniasis due to Leishmania chagasi/Le. infantum in an endemic area of Guarico State, Venezuela. Trans. R. Soc. Trop. Med. Hyg. 2009;103:721–726. doi: 10.1016/j.trstmh.2008.11.019. PubMed DOI
Ponce C, et al. Leishmania donovani chagasi: new clinical variant of cutaneous leishmaniasis in Honduras. Lancet. 1991;337:67–70. doi: 10.1016/0140-6736(91)90734-7. PubMed DOI
Carnielli JBT, et al. A Leishmania infantum genetic marker associated with miltefosine treatment failure for visceral leishmaniasis. EBioMedicine. 2018;36:83–91. doi: 10.1016/j.ebiom.2018.09.029. PubMed DOI PMC
Freitas-Mesquita AL, et al. Inhibitory effects promoted by 5′-nucleotides on the ecto-3′-nucleotidase activity of Leishmania amazonensis. Exp. Parasitol. 2016;169:111–118. doi: 10.1016/j.exppara.2016.08.001. PubMed DOI
Guimarães-Costa AB, et al. 3’-Nucleotidase/nuclease activity allows Leishmania parasites to escape killing by neutrophil extracellular traps. Infect. Immun. 2014;82:1732–1740. doi: 10.1128/IAI.01232-13. PubMed DOI PMC
Guimarães-Costa, A. B. et al. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc. Natl Acad. Sci. USA106, 6748–6753 (2009). PubMed PMC
Rosenzweig D, et al. Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J. 2007;22:590–602. doi: 10.1096/fj.07-9254com. PubMed DOI
Laffitte, M.-C. N., Leprohon, P., Papadopoulou, B. & Ouellette, M. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Research5, 2350 (2016). PubMed PMC
Teixeira DG, et al. Comparative analyses of whole genome sequences of Leishmania infantum isolates from humans and dogs in northeastern Brazil. Int. J. Parasitol. 2017;47:655–665. doi: 10.1016/j.ijpara.2017.04.004. PubMed DOI PMC
Franssen, S. U. et al. Global genome diversity of the Leishmania donovani complex. eLife9, e51243 (2020). PubMed PMC
Brotherton M-C, et al. Proteomic and genomic analyses of antimony resistant Leishmania infantum mutant. PLoS ONE. 2013;8:e81899. doi: 10.1371/journal.pone.0081899. PubMed DOI PMC
Schwabl, P. Comparing the phylogenetic positions of HTZ isolates from Mato Grosso (Brazil) with those generated by simulated sexual mating. Neighbor-joinning relationships based on Euclidian distance matrix (‘ape“package v5.0 in R v3.4.1.) - Code_0. 10.5281/zenodo.4276186 (2019).
Pudlo P, et al. Reliable ABC model choice via random forests. Bioinformatics. 2016;32:859–866. doi: 10.1093/bioinformatics/btv684. PubMed DOI
Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. Robust demographic inference from genomic and SNP data. PLoS Genet. 2013;9:e1003905. doi: 10.1371/journal.pgen.1003905. PubMed DOI PMC
Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 1999;16:1114–1114. doi: 10.1093/oxfordjournals.molbev.a026201. DOI
Paletta-Silva R, et al. Leishmania amazonensis: characterization of an ecto-3′-nucleotidase activity and its possible role in virulence. Exp. Parasitol. 2011;129:277–283. doi: 10.1016/j.exppara.2011.07.014. PubMed DOI
Vieira DP, Paletta-Silva R, Saraiva EM, Lopes AHCS, Meyer-Fernandes JR. Leishmania chagasi: an ecto-3’-nucleotidase activity modulated by inorganic phosphate and its possible involvement in parasite-macrophage interaction. Exp. Parasitol. 2011;127:702–707. doi: 10.1016/j.exppara.2010.11.003. PubMed DOI
Balmer O, Beadell JS, Gibson W, Caccone A. Phylogeography and taxonomy of Trypanosoma brucei. PLoS Negl. Trop. Dis. 2011;5:e961. doi: 10.1371/journal.pntd.0000961. PubMed DOI PMC
Goodhead I, et al. Whole-genome sequencing of Trypanosoma brucei reveals introgression between subspecies that is associated with virulence. mBio. 2013;4:e00197–13. doi: 10.1128/mBio.00197-13. PubMed DOI PMC
Rougeron V, De Meeûs T, Bañuls A-L. Reproduction in Leishmania: a focus on genetic exchange. Infect. Genet. Evol. 2017;50:128–132. doi: 10.1016/j.meegid.2016.10.013. PubMed DOI
Schwabl, P. et al. Meiotic sex in Chagas disease parasite Trypanosoma cruzi. Nat. Commun. 10, 3972 (2019). PubMed PMC
Reece SE, Drew DR, Gardner A. Sex ratio adjustment and kin discrimination in malaria parasites. Nature. 2008;453:609–614. doi: 10.1038/nature06954. PubMed DOI PMC
Morlais I, et al. Plasmodium falciparum mating patterns and mosquito infectivity of natural isolates of gametocytes. PLoS ONE. 2015;10:e0123777. doi: 10.1371/journal.pone.0123777. PubMed DOI PMC
Bussotti G, et al. Leishmania genome dynamics during environmental adaptation reveal strain-specific differences in gene copy number variation, karyotype instability, and telomeric amplification. mBio. 2018;9:e01399–18. doi: 10.1128/mBio.01399-18. PubMed DOI PMC
Vasudevan G, Ullman B, Landfear SM. Point mutations in a nucleoside transporter gene from Leishmania donovani confer drug resistance and alter substrate selectivity. Proc. Natl Acad. Sci. USA. 2001;98:6092–6097. doi: 10.1073/pnas.101537298. PubMed DOI PMC
Rastrojo A, et al. Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. Int. J. Parasitol. Drugs Drug Resist. 2018;8:246–264. doi: 10.1016/j.ijpddr.2018.04.002. PubMed DOI PMC
Patino LH, Muskus C, Ramírez JD. Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasit. Vectors. 2019;12:348. doi: 10.1186/s13071-019-3603-8. PubMed DOI PMC
Boité MC, et al. Trans-Atlantic Spillover: deconstructing the ecological adaptation of Leishmania infantum in the Americas. Genes. 2020;11:4. doi: 10.3390/genes11010004. PubMed DOI PMC
Yalcindag E, et al. Multiple independent introductions of Plasmodium falciparum in South America. Proc. Natl Acad. Sci. USA. 2012;109:511–516. doi: 10.1073/pnas.1119058109. PubMed DOI PMC
Excoffier L, Ray N. Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol. Evol. 2008;23:347–351. doi: 10.1016/j.tree.2008.04.004. PubMed DOI
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
DePristo MA, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011;43:491–498. doi: 10.1038/ng.806. PubMed DOI PMC
Derrien, T. et al. Fast computation and applications of genome mappability. PLoS ONE7, e30377 (2012). PubMed PMC
Marco-Sola S, Ribeca P. Efficient alignment of Illumina-like high-throughput sequencing reads with the GEnomic Multi-tool (GEM) mapper. Curr. Protoc. Bioinformatics. 2015;50:11.13.1–11.13.20. doi: 10.1002/0471250953.bi1113s50. PubMed DOI
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Gower JC. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika. 1966;53:325–338. doi: 10.1093/biomet/53.3-4.325. DOI
The R Foundation. R: The R Project for Statistical Computing, https://www.r-project.org/. Accessed in 2019 and 2020.
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664. doi: 10.1101/gr.094052.109. PubMed DOI PMC
Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–1405. doi: 10.1093/bioinformatics/btn129. PubMed DOI
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI
Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 2007;81:1084–1097. doi: 10.1086/521987. PubMed DOI PMC
Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLOS Genet. 2012;8:e1002967. doi: 10.1371/journal.pgen.1002967. PubMed DOI PMC
Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010;10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x. PubMed DOI
Foll M, Gaggiotti O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics. 2008;180:977–993. doi: 10.1534/genetics.108.092221. PubMed DOI PMC
Cingolani P, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012;6:80–92. doi: 10.4161/fly.19695. PubMed DOI PMC
Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data https://rdrr.io/cran/gplots/ (2020).
Oksanen, J. et al. vegan: Community Ecology Package https://cran.r-project.org/web/packages/vegan/index.html (2019).
Virtanen, P. et al. SciPy 1.0–fundamental algorithms for scientific computing in Python. Nat. Methods17, 261–272 (2019). PubMed PMC
Fox, J. & Weisberg, S. in An R Companion to Applied Regression 3rd edn (Sage, 2019). ISBN-13:978-1544336473.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Reich D, Thangaraj K, Patterson N, Price AL, Singh L. Reconstructing Indian population history. Nature. 2009;461:489–494. doi: 10.1038/nature08365. PubMed DOI PMC