Gene deletion as a possible strategy adopted by New World Leishmania infantum to maximize geographic dispersion
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40111992
PubMed Central
PMC11975383
DOI
10.1371/journal.ppat.1012938
PII: PPATHOGENS-D-24-02287
Knihovny.cz E-zdroje
- MeSH
- delece genu * MeSH
- Leishmania infantum * genetika patogenita MeSH
- leishmanióza viscerální * parazitologie přenos epidemiologie MeSH
- lidé MeSH
- myši MeSH
- Psychodidae parazitologie MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The present study investigates implications of a sub-chromosomal deletion in Leishmania infantum strains, the causative agent of American Visceral Leishmaniasis (AVL). Primarily found in New World strains, the deletion leads to the absence of the ecto-3'-nucleotidase/nuclease enzyme, impacting parasite virulence, pathogenicity, and drug susceptibility. The factors favoring prevalence and the widespread geographic distribution of these deleted mutant parasites (DEL) in the NW (NW) are discussed under the generated data. METHODS: We conducted phenotypic assessments of the sub-chromosomal deletion through in vitro assays with axenic parasites and experimental infections in both in vitro and in vivo models of vertebrate and invertebrate hosts using geographically diverse mutant field isolates. RESULTS: Despite reduced pathogenicity, the DEL strains efficiently infect vertebrate hosts and exhibit relevant differences, including enhanced metacyclogenesis and colonization rates in sand flies, potentially facilitating transmission. This combination may represent a more effective way to maintain and disperse the transmission cycle of DEL strains. CONCLUSIONS: Phenotypic assessments reveal altered parasite fitness, with potential enhanced transmissibility at the population level. Reduced susceptibility of DEL strains to miltefosine, a key drug in VL treatment, further complicates control efforts. The study underscores the importance of typing parasite genomes for surveillance and control, advocating for the sub-chromosomal deletion as a molecular marker in AVL management.
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Instituto Nacional de Ciência e tecnologia EpiAMO Porto Velho Brazil
Laboratório de Pesquisa em Leishmanioses Instituto Oswaldo Cruz FIOCRUZ Rio de Janeiro Brazil
Laboratório de Pesquisa em Malaria Instituto Oswaldo Cruz FIOCRUZ Rio de Janeiro Brazil
Zobrazit více v PubMed
Bussotti G, Li B, Pescher P, Vojtkova B, Louradour I, Pruzinova K, et al.. Leishmania allelic selection during experimental sand fly infection correlates with mutational signatures of oxidative DNA damage. Proc Natl Acad Sci U S A. 2023;120(10):e2220828120. doi: 10.1073/pnas.2220828120 PubMed DOI PMC
Dumetz F, Imamura H, Sanders M, Seblova V, Myskova J, Pescher P, et al.. Modulation of aneuploidy in leishmania donovani during adaptation to different in vitro and in vivo environments and its impact on gene expression. mBio. 2017;8(3):e00599-17. doi: 10.1128/mBio.00599-17 PubMed DOI PMC
Prieto Barja P, Pescher P, Bussotti G, Dumetz F, Imamura H, Kedra D, et al.. Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nat Ecol Evol. 2017;1(12):1961–9. doi: 10.1038/s41559-017-0361-x PubMed DOI
Schwabl P, Boité MC, Bussotti G, Jacobs A, Andersson B, Moreira O, et al.. Colonization and genetic diversification processes of Leishmania infantum in the Americas. Commun Biol. 2021;4(1):139. doi: 10.1038/s42003-021-01658-5 PubMed DOI PMC
Sterkers Y, Lachaud L, Crobu L, Bastien P, Pagès M. FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major. Cell Microbiol. 2011;13(2):274–83. doi: 10.1111/j.1462-5822.2010.01534.x PubMed DOI
Freitas-Mesquita AL, Meyer-Fernandes JR. 3’nucleotidase/nuclease in protozoan parasites: Molecular and biochemical properties and physiological roles. Exp Parasitol. 2017;179:1–6. doi: 10.1016/j.exppara.2017.06.001 PubMed DOI
Hammond DJ, Gutteridge WE. Purine and pyrimidine metabolism in the Trypanosomatidae. Mol Biochem Parasitol. 1984;13(3):243–61. doi: 10.1016/0166-6851(84)90117-8 PubMed DOI
Freitas-Mesquita AL, Meyer-Fernandes JR. Ecto-nucleotidases and Ecto-phosphatases from Leishmania and Trypanosoma Parasites. In: Santos ALS, Branquinha MH, d’Avila-Levy CM, Kneipp LF, Sodré CL, editors. Proteins and Proteomics of Leishmania and Trypanosoma. Dordrecht: Springer Netherlands; 2014;217–52. doi: 10.1007/978-94-007-7305-9_10 PubMed DOI
Carter NS, Yates PA, Gessford SK, Galagan SR, Landfear SM, Ullman B. Adaptive responses to purine starvation in Leishmania donovani. Mol Microbiol. 2010;78(1):92–107. doi: 10.1111/j.1365-2958.2010.07327.x PubMed DOI PMC
Peres NT de A, Cunha LCS, Barbosa MLA, Santos MB, de Oliveira FA, de Jesus AMR, et al.. Infection of human macrophages by Leishmania infantum is influenced by ecto-nucleotidases. Front Immunol. 2018;81954. doi: 10.3389/fimmu.2017.01954 PubMed DOI PMC
Paletta-Silva R, Vieira DP, Vieira-Bernardo R, Majerowicz D, Gondim KC, Vannier-Santos MA, et al.. Leishmania amazonensis: characterization of an ecto-3’-nucleotidase activity and its possible role in virulence. Exp Parasitol. 2011;129(3):277–83. doi: 10.1016/j.exppara.2011.07.014 PubMed DOI
Vieira DP, Paletta-Silva R, Saraiva EM, Lopes AHCS, Meyer-Fernandes JR. Leishmania chagasi: an ecto-3’-nucleotidase activity modulated by inorganic phosphate and its possible involvement in parasite-macrophage interaction. Exp Parasitol. 2011;127(3):702–7. doi: 10.1016/j.exppara.2010.11.003 PMID: PubMed DOI
Guimarães-Costa AB, DeSouza-Vieira TS, Paletta-Silva R, Freitas-Mesquita AL, Meyer-Fernandes JR, Saraiva EM. 3’-nucleotidase/nuclease activity allows Leishmania parasites to escape killing by neutrophil extracellular traps. Infect Immun. 2014;82(4):1732–40. doi: 10.1128/IAI.01232-13 PubMed DOI PMC
Freitas-Mesquita AL, Dick CF, Dos-Santos ALA, Nascimento MTC, Rochael NC, Saraiva EM, et al.. Cloning, expression and purification of 3’-nucleotidase/nuclease, an enzyme responsible for the Leishmania escape from neutrophil extracellular traps. Mol Biochem Parasitol. 2019;229:6–14. doi: 10.1016/j.molbiopara.2019.02.004 PubMed DOI
Carnielli JBT, Dave A, Romano A, Forrester S, de Faria PR, Monti-Rocha R, et al.. 3’Nucleotidase/nuclease is required for Leishmania infantum clinical isolate susceptibility to miltefosine. EBioMedicine. 2022;86:104378. doi: 10.1016/j.ebiom.2022.104378 PubMed DOI PMC
Carnielli JBT, Monti-Rocha R, Costa DL, Molina Sesana A, Pansini LNN, Segatto M, et al.. Natural Resistance of Leishmania infantum to miltefosine contributes to the low efficacy in the treatment of visceral leishmaniasis in Brazil. Am J Trop Med Hyg. 2019;101(4):789–94. doi: 10.4269/ajtmh.18-0949 PubMed DOI PMC
Combes C. Fitness of parasites: pathology and selection. Int J Parasitol. 1997;27(1):1–10. doi: 10.1016/s0020-7519(96)00168-3 PubMed DOI
Carnielli JBT, Crouch K, Forrester S, Silva VC, Carvalho SFG, Damasceno JD, et al.. A Leishmania infantum genetic marker associated with miltefosine treatment failure for visceral leishmaniasis. EBioMedicine. 2018;36:83–91. doi: 10.1016/j.ebiom.2018.09.029 PubMed DOI PMC
Ministério da Agricultura, Pecuária e Abastecimento. doi: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-pecuarios/produtos-veterinarios/legislacao-1/notas-tecnicas/nota-tecnica-no-11-2016-cpv-dfip-sda-gm-mapa-de-1-09-2016.pdf
Ferreira GEM, dos Santos BN, Dorval MEC, Ramos TPB, Porrozzi R, Peixoto AA, et al.. The genetic structure of Leishmania infantum populations in Brazil and its possible association with the transmission cycle of visceral leishmaniasis. PLoS One. 2012;7(5):e36242. doi: 10.1371/journal.pone.0036242 PubMed DOI PMC
Leroux M, Luquain-Costaz C, Lawton P, Azzouz-Maache S, Delton I. Fatty acid composition and metabolism in Leishmania parasite species: potential biomarkers or drug targets for leishmaniasis?. Int J Mol Sci. 2023;24(5):4702. doi: 10.3390/ijms24054702 PubMed DOI PMC
Serafim TD, Figueiredo AB, Costa PAC, Marques-da-Silva EA, Gonçalves R, de Moura SAL, et al.. Leishmania metacyclogenesis is promoted in the absence of purines. PLoS Negl Trop Dis. 2012;6(9):e1833. doi: 10.1371/journal.pntd.0001833 PubMed DOI PMC
Zakai HA, Chance ML, Bates PA. In vitro stimulation of metacyclogenesis in Leishmania braziliensis, L. donovani, L. major and L. mexicana. Parasitology. 1998;116 ( Pt 4)305–9. doi: 10.1017/s0031182097002382 PubMed DOI
Aldfer MM, AlSiari TA, Elati HAA, Natto MJ, Alfayez IA, Campagnaro GD, et al.. Nucleoside transport and nucleobase uptake null mutants in Leishmania mexicana for the routine expression and characterization of purine and pyrimidine transporters. Int J Mol Sci. 2022;23(15):8139. doi: 10.3390/ijms23158139 PubMed DOI PMC
de Paiva RMC, Grazielle-Silva V, Cardoso MS, Nakagaki BN, Mendonça-Neto RP, Canavaci AMC, et al.. amastin knockdown in Leishmania braziliensis affects parasite-macrophage interaction and results in impaired viability of intracellular amastigotes. PLoS Pathog. 2015;11(12):e1005296. doi: 10.1371/journal.ppat.1005296 PubMed DOI PMC
Alcolea PJ, Alonso A, Molina R, Jiménez M, Myler PJ, Larraga V. Functional genomics in sand fly-derived Leishmania promastigotes. PLoS Negl Trop Dis. 2019;13(5):e0007288. doi: 10.1371/journal.pntd.0007288 PubMed DOI PMC
Ramos CS, Yokoyama-Yasunaka JKU, Guerra-Giraldez C, Price HP, Mortara RA, Smith DF, et al.. Leishmania amazonensis META2 protein confers protection against heat shock and oxidative stress. Exp Parasitol. 2011;127(1):228–37. doi: 10.1016/j.exppara.2010.08.004 PubMed DOI
França-Silva JC, Barata RA, Costa RT da, Monteiro EM, Machado-Coelho GLL, Vieira EP, et al.. Importance of Lutzomyia longipalpis in the dynamics of transmission of canine visceral leishmaniasis in the endemic area of Porteirinha Municipality, Minas Gerais, Brazil. Vet Parasitol. 2005;131(3–4):213–20. doi: 10.1016/j.vetpar.2005.05.006 PubMed DOI
Gomes R, Oliveira F. The immune response to sand fly salivary proteins and its influence on leishmania immunity. Front Immunol. 2012;3110. doi: 10.3389/fimmu.2012.00110 PubMed DOI PMC
Alcolea PJ, Alonso A, Degayón MA, Moreno-Paz M, Jiménez M, Molina R, et al.. In vitro infectivity and differential gene expression of Leishmania infantum metacyclic promastigotes: negative selection with peanut agglutinin in culture versus isolation from the stomodeal valve of Phlebotomus perniciosus. BMC Genomics. 2016;17:375. doi: 10.1186/s12864-016-2672-8 PubMed DOI PMC
Kimblin N, Peters N, Debrabant A, Secundino N, Egen J, Lawyer P, et al.. Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. Proc Natl Acad Sci U S A. 2008;105(29):10125–30. doi: 10.1073/pnas.0802331105 PubMed DOI PMC
Lira R, Doherty M, Modi G, Sacks D. Evolution of lesion formation, parasitic load, immune response, and reservoir potential in C57BL/6 mice following high- and low-dose challenge with Leishmania major. Infect Immun. 2000;68(9):5176–82. doi: 10.1128/IAI.68.9.5176-5182.2000 PubMed DOI PMC
Souza NA, Brazil RP, Araki AS. The current status of the Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae) species complex. Mem Inst Oswaldo Cruz. 2017;112(3):161–74. doi: 10.1590/0074-02760160463 PubMed DOI PMC
Kutzer MAM, Armitage SAO. Maximising fitness in the face of parasites: a review of host tolerance. Zoology (Jena). 2016;119(4):281–9. doi: 10.1016/j.zool.2016.05.011 PubMed DOI
Yap GS. Avirulence: an essential feature of the parasitic lifestyle. Trends Parasitol. 2022;38(12):1028–30. doi: 10.1016/j.pt.2022.09.003 PubMed DOI
Jara M, Arevalo J, Llanos-Cuentas A, den Broeck FV, Domagalska MA, Dujardin J-C. Unveiling drug-tolerant and persister-like cells in Leishmania braziliensis lines derived from patients with cutaneous leishmaniasis. Front Cell Infect Microbiol. 2023;131253033. doi: 10.3389/fcimb.2023.1253033 PubMed DOI PMC
Melchor SJ, Ewald SE. Disease Tolerance in Toxoplasma Infection. Front Cell Infect Microbiol. 2019;9:185. doi: 10.3389/fcimb.2019.00185 PubMed DOI PMC
Chapman LAC, Dyson L, Courtenay O, Chowdhury R, Bern C, Medley GF, et al.. Quantification of the natural history of visceral leishmaniasis and consequences for control. Parasit Vectors. 2015;8:521. doi: 10.1186/s13071-015-1136-3 PubMed DOI PMC
Courtenay O, Quinnell RJ, Garcez LM, Shaw JJ, Dye C. Infectiousness in a cohort of brazilian dogs: why culling fails to control visceral leishmaniasis in areas of high transmission. J Infect Dis. 2002;186(9):1314–20. doi: 10.1086/344312 PubMed DOI
Sacks DL, Melby PC. Animal models for the analysis of immune responses to leishmaniasis. Curr Protoc Immunol. 2001. doi: 10.1002/0471142735.im1902s28 PubMed DOI PMC
Guimarães-Costa AB, Nascimento MTC, Froment GS, Soares RPP, Morgado FN, Conceição-Silva F, et al.. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci U S A. 2009;106(16):6748–53. doi: 10.1073/pnas.0900226106 PubMed DOI PMC
Lawyer P, Killick-Kendrick M, Rowland T, Rowton E, Volf P. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae). Parasite. 2017;24:42. doi: 10.1051/parasite/2017041 PubMed DOI PMC
Sádlová J, Price HP, Smith BA, Votýpka J, Volf P, Smith DF. The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell Microbiol. 2010;12(12):1765–79. doi: 10.1111/j.1462-5822.2010.01507.x PubMed DOI PMC
Abràmoff DMD. Image Processing with ImageJ.