Comparative Integrated Omics Analysis of the Hfq Regulon in Bordetella pertussis

. 2019 Jun 24 ; 20 (12) : . [epub] 20190624

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31238496

Grantová podpora
19-12338S Grantová Agentura České Republiky
MSM200201702 Akademie Věd České Republiky

Bordetella pertussis is a Gram-negative strictly human pathogen of the respiratory tract and the etiological agent of whooping cough (pertussis). Previously, we have shown that RNA chaperone Hfq is required for virulence of B. pertussis. Furthermore, microarray analysis revealed that a large number of genes are affected by the lack of Hfq. This study represents the first attempt to characterize the Hfq regulon in bacterial pathogen using an integrative omics approach. Gene expression profiles were analyzed by RNA-seq and protein amounts in cell-associated and cell-free fractions were determined by LC-MS/MS technique. Comparative analysis of transcriptomic and proteomic data revealed solid correlation (r2 = 0.4) considering the role of Hfq in post-transcriptional control of gene expression. Importantly, our study confirms and further enlightens the role of Hfq in pathogenicity of B. pertussis as it shows that Δhfq strain displays strongly impaired secretion of substrates of Type III secretion system (T3SS) and substantially reduced resistance to serum killing. On the other hand, significantly increased production of proteins implicated in transport of important metabolites and essential nutrients observed in the mutant seems to compensate for the physiological defect introduced by the deletion of the hfq gene.

Zobrazit více v PubMed

Mattoo S., Cherry J.D. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to bordetella pertussis and other bordetella subspecies. Clin. Microbiol. Rev. 2005;18:326–382. doi: 10.1128/CMR.18.2.326-382.2005. PubMed DOI PMC

World Health Organization (WHO) Vaccine preventable deaths and the global immunization vision and strategy, 2006–2015. MMWR Morb. Mortal. Wkly. Rep. 2006;55:511–515. PubMed

Raguckas S.E., VandenBussche H.L., Jacobs C., Klepser M.E. Pertussis resurgence: Diagnosis, treatment, prevention, and beyond. Pharmacotherapy. 2007;27:41–52. doi: 10.1592/phco.27.1.41. PubMed DOI

Cherry J.D. The present and future control of pertussis. Clin. Infect. Dis. 2010;51:663–667. doi: 10.1086/655826. PubMed DOI

Cherry J.D. Pertussis: Challenges today and for the future. PLoS Pathog. 2013;9:e1003418. doi: 10.1371/journal.ppat.1003418. PubMed DOI PMC

Mooi F.R., Van Der Maas N.A., De Melker H.E. Pertussis resurgence: Waning immunity and pathogen adaptation—Two sides of the same coin. Epidemiol. Infect. 2014;142:685–694. doi: 10.1017/S0950268813000071. PubMed DOI PMC

Sealey K.L., Belcher T., Preston A. Bordetella pertussis epidemiology and evolution in the light of pertussis resurgence. Infect. Genet. Evol. 2016;40:136–143. doi: 10.1016/j.meegid.2016.02.032. PubMed DOI

Burdin N., Handy L.K., Plotkin S.A. What is wrong with pertussis vaccine immunity? The problem of waning effectiveness of pertussis vaccines. Cold Spring Harb. Perspect. Biol. 2017;9 doi: 10.1101/cshperspect.a029454. PubMed DOI PMC

Hewlett E.L., Burns D.L., Cotter P.A., Harvill E.T., Merkel T.J., Quinn C.P., Stibitz E.S. Pertussis pathogenesis—What we know and what we don’t know. J. Infect. Dis. 2014;209:982–985. doi: 10.1093/infdis/jit639. PubMed DOI PMC

The Periscope Consortium Periscope: Road towards effective control of pertussis. Lancet Infect. Dis. 2019;19:179–186. doi: 10.1016/S1473-3099(18)30646-7. PubMed DOI

Chao Y., Vogel J. The role of hfq in bacterial pathogens. Curr. Opin. Microbiol. 2010;13:24–33. doi: 10.1016/j.mib.2010.01.001. PubMed DOI

Feliciano J.R., Grilo A.M., Guerreiro S.I., Sousa S.A., Leitao J.H. Hfq: A multifaceted rna chaperone involved in virulence. Fut. Microbiol. 2016;11:137–151. doi: 10.2217/fmb.15.128. PubMed DOI

Papenfort K., Vogel J. Regulatory rna in bacterial pathogens. Cell Host Microbe. 2010;8:116–127. doi: 10.1016/j.chom.2010.06.008. PubMed DOI

Vogel J., Luisi B.F. Hfq and its constellation of rna. Nat. Rev. Microbiol. 2011;9:578–589. doi: 10.1038/nrmicro2615. PubMed DOI PMC

Vecerek B., Rajkowitsch L., Sonnleitner E., Schroeder R., Blasi U. The c-terminal domain of escherichia coli hfq is required for regulation. Nucleic Acids Res. 2008;36:133–143. doi: 10.1093/nar/gkm985. PubMed DOI PMC

Updegrove T.B., Zhang A., Storz G. Hfq: The flexible rna matchmaker. Curr. Opin. Microbiol. 2016;30:133–138. doi: 10.1016/j.mib.2016.02.003. PubMed DOI PMC

Brennan R.G., Link T.M. Hfq structure, function and ligand binding. Curr. Opin. Microbiol. 2007;10:125–133. doi: 10.1016/j.mib.2007.03.015. PubMed DOI

Bibova I., Skopova K., Masin J., Cerny O., Hot D., Sebo P., Vecerek B. The rna chaperone hfq is required for virulence of bordetella pertussis. Infect. Immun. 2013;81:4081–4090. doi: 10.1128/IAI.00345-13. PubMed DOI PMC

Bibova I., Hot D., Keidel K., Amman F., Slupek S., Cerny O., Gross R., Vecerek B. Transcriptional profiling of bordetella pertussis reveals requirement of rna chaperone hfq for type iii secretion system functionality. RNA Biol. 2015;12:175–185. doi: 10.1080/15476286.2015.1017237. PubMed DOI PMC

de Sousa Abreu R., Penalva L.O., Marcotte E.M., Vogel C. Global signatures of protein and mrna expression levels. Mol. Biosyst. 2009;5:1512–1526. doi: 10.1039/b908315d. PubMed DOI PMC

Kumar D., Bansal G., Narang A., Basak T., Abbas T., Dash D. Integrating transcriptome and proteome profiling: Strategies and applications. Proteomics. 2016;16:2533–2544. doi: 10.1002/pmic.201600140. PubMed DOI

Gygi S.P., Rochon Y., Franza B.R., Aebersold R. Correlation between protein and mrna abundance in yeast. Mol. Cell Biol. 1999;19:1720–1730. doi: 10.1128/MCB.19.3.1720. PubMed DOI PMC

Greenbaum D., Colangelo C., Williams K., Gerstein M. Comparing protein abundance and mrna expression levels on a genomic scale. Genome Biol. 2003;4:117. doi: 10.1186/gb-2003-4-9-117. PubMed DOI PMC

Ghazalpour A., Bennett B., Petyuk V.A., Orozco L., Hagopian R., Mungrue I.N., Farber C.R., Sinsheimer J., Kang H.M., Furlotte N., et al. Comparative analysis of proteome and transcriptome variation in mouse. PLoS Genet. 2011;7:e1001393. doi: 10.1371/journal.pgen.1001393. PubMed DOI PMC

Maier T., Guell M., Serrano L. Correlation of mrna and protein in complex biological samples. FEBS Lett. 2009;583:3966–3973. doi: 10.1016/j.febslet.2009.10.036. PubMed DOI

Manzoni C., Kia D.A., Vandrovcova J., Hardy J., Wood N.W., Lewis P.A., Ferrari R. Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Brief Bioinform. 2018;19:286–302. doi: 10.1093/bib/bbw114. PubMed DOI PMC

Nie L., Wu G., Zhang W. Correlation of mrna expression and protein abundance affected by multiple sequence features related to translational efficiency in desulfovibrio vulgaris: A quantitative analysis. Genetics. 2006;174:2229–2243. doi: 10.1534/genetics.106.065862. PubMed DOI PMC

Arraiano C.M., Andrade J.M., Domingues S., Guinote I.B., Malecki M., Matos R.G., Moreira R.N., Pobre V., Reis F.P., Saramago M., et al. The critical role of rna processing and degradation in the control of gene expression. FEMS Microbiol. Rev. 2010;34:883–923. doi: 10.1111/j.1574-6976.2010.00242.x. PubMed DOI

Kudla G., Murray A.W., Tollervey D., Plotkin J.B. Coding-sequence determinants of gene expression in escherichia coli. Science. 2009;324:255–258. doi: 10.1126/science.1170160. PubMed DOI PMC

Grenga L., Chandra G., Saalbach G., Galmozzi C.V., Kramer G., Malone J.G. Analyzing the complex regulatory landscape of hfq—An integrative, multi-omics approach. Front. Microbiol. 2017;8:1784. doi: 10.3389/fmicb.2017.01784. PubMed DOI PMC

Delgado-Ortega M., Marc D., Dupont J., Trapp S., Berri M., Meurens F. Socs proteins in infectious diseases of mammals. Vet. Immunol. Immunopathol. 2013;151:1–19. doi: 10.1016/j.vetimm.2012.11.008. PubMed DOI PMC

Marr N., Shah N.R., Lee R., Kim E.J., Fernandez R.C. Bordetella pertussis autotransporter vag8 binds human c1 esterase inhibitor and confers serum resistance. PLoS ONE. 2011;6:e20585. doi: 10.1371/journal.pone.0020585. PubMed DOI PMC

Hovingh E.S., van den Broek B., Kuipers B., Pinelli E., Rooijakkers S.H.M., Jongerius I. Acquisition of c1 inhibitor by bordetella pertussis virulence associated gene 8 results in c2 and c4 consumption away from the bacterial surface. PLoS Pathog. 2017;13:e1006531. doi: 10.1371/journal.ppat.1006531. PubMed DOI PMC

Brookes C., Freire-Martin I., Cavell B., Alexander F., Taylor S., Persaud R., Fry N., Preston A., Diavatopoulos D., Gorringe A. Bordetella pertussis isolates vary in their interactions with human complement components. Emerg. Microbes Infect. 2018;7:81. doi: 10.1038/s41426-018-0084-3. PubMed DOI PMC

Marioni J.C., Mason C.E., Mane S.M., Stephens M., Gilad Y. Rna-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008;18:1509–1517. doi: 10.1101/gr.079558.108. PubMed DOI PMC

Zhao S., Fung-Leung W.P., Bittner A., Ngo K., Liu X. Comparison of rna-seq and microarray in transcriptome profiling of activated t cells. PLoS ONE. 2014;9:e78644. doi: 10.1371/journal.pone.0078644. PubMed DOI PMC

Basler M., Linhartova I., Halada P., Novotna J., Bezouskova S., Osicka R., Weiser J., Vohradsky J., Sebo P. The iron-regulated transcriptome and proteome of neisseria meningitidis serogroup c. Proteomics. 2006;6:6194–6206. doi: 10.1002/pmic.200600312. PubMed DOI

Yuk M.H., Harvill E.T., Miller J.F. The bvgas virulence control system regulates type iii secretion in bordetella bronchiseptica. Mol. Microbiol. 1998;28:945–959. doi: 10.1046/j.1365-2958.1998.00850.x. PubMed DOI

Ahuja U., Shokeen B., Cheng N., Cho Y., Blum C., Coppola G., Miller J.F. Differential regulation of type iii secretion and virulence genes in bordetella pertussis and bordetella bronchiseptica by a secreted anti-sigma factor. Proc. Natl. Acad. Sci. USA. 2016;113:2341–2348. doi: 10.1073/pnas.1600320113. PubMed DOI PMC

Mattoo S., Yuk M.H., Huang L.L., Miller J.F. Regulation of type iii secretion in bordetella. Mol. Microbiol. 2004;52:1201–1214. doi: 10.1111/j.1365-2958.2004.04053.x. PubMed DOI

Kurushima J., Kuwae A., Abe A. The type iii secreted protein bspr regulates the virulence genes in bordetella bronchiseptica. PLoS ONE. 2012;7:e38925. doi: 10.1371/journal.pone.0038925. PubMed DOI PMC

Fennelly N.K., Sisti F., Higgins S.C., Ross P.J., van der Heide H., Mooi F.R., Boyd A., Mills K.H. Bordetella pertussis expresses a functional type iii secretion system that subverts protective innate and adaptive immune responses. Infect. Immun. 2008;76:1257–1266. doi: 10.1128/IAI.00836-07. PubMed DOI PMC

Gaillard M.E., Bottero D., Castuma C.E., Basile L.A., Hozbor D. Laboratory adaptation of bordetella pertussis is associated with the loss of type three secretion system functionality. Infect. Immun. 2011;79:3677–3682. doi: 10.1128/IAI.00136-11. PubMed DOI PMC

Brickman T.J., Cummings C.A., Liew S.Y., Relman D.A., Armstrong S.K. Transcriptional profiling of the iron starvation response in bordetella pertussis provides new insights into siderophore utilization and virulence gene expression. J. Bacteriol. 2011;193:4798–4812. doi: 10.1128/JB.05136-11. PubMed DOI PMC

Hanawa T., Kamachi K., Yonezawa H., Fukutomi T., Kawakami H., Kamiya S. Glutamate limitation, bvgas activation, and (p)ppgpp regulate the expression of the bordetella pertussis type 3 secretion system. J. Bacteriol. 2016;198:343–351. doi: 10.1128/JB.00596-15. PubMed DOI PMC

Fantappie L., Metruccio M.M., Seib K.L., Oriente F., Cartocci E., Ferlicca F., Giuliani M.M., Scarlato V., Delany I. The rna chaperone hfq is involved in stress response and virulence in neisseria meningitidis and is a pleiotropic regulator of protein expression. Infect. Immun. 2009;77:1842–1853. doi: 10.1128/IAI.01216-08. PubMed DOI PMC

Barnes M.G., Weiss A.A. Brka protein of bordetella pertussis inhibits the classical pathway of complement after c1 deposition. Infect. Immun. 2001;69:3067–3072. doi: 10.1128/IAI.69.5.3067-3072.2001. PubMed DOI PMC

Berggard K., Johnsson E., Mooi F.R., Lindahl G. Bordetella pertussis binds the human complement regulator c4bp: Role of filamentous hemagglutinin. Infect. Immun. 1997;65:3638–3643. PubMed PMC

Noofeli M., Bokhari H., Blackburn P., Roberts M., Coote J.G., Parton R. Bapc autotransporter protein is a virulence determinant of bordetella pertussis. Microb. Pathog. 2011;51:169–177. doi: 10.1016/j.micpath.2011.04.004. PubMed DOI

Rosa L.T., Bianconi M.E., Thomas G.H., Kelly D.J. Tripartite atp-independent periplasmic (trap) transporters and tripartite tricarboxylate transporters (ttt): From uptake to pathogenicity. Front. Cell Infect. Microbiol. 2018;8:33. doi: 10.3389/fcimb.2018.00033. PubMed DOI PMC

Antoine R., Jacob-Dubuisson F., Drobecq H., Willery E., Lesjean S., Locht C. Overrepresentation of a gene family encoding extracytoplasmic solute receptors in bordetella. J. Bacteriol. 2003;185:1470–1474. doi: 10.1128/JB.185.4.1470-1474.2003. PubMed DOI PMC

Huvent I., Belrhali H., Antoine R., Bompard C., Locht C., Jacob-Dubuisson F., Villeret V. Crystal structure of bordetella pertussis bugd solute receptor unveils the basis of ligand binding in a new family of periplasmic binding proteins. J. Mol. Biol. 2006;356:1014–1026. doi: 10.1016/j.jmb.2005.11.096. PubMed DOI

Huvent I., Belrhali H., Antoine R., Bompard C., Locht C., Jacob-Dubuisson F., Villeret V. Structural analysis of bordetella pertussis buge solute receptor in a bound conformation. Acta Crystallogr. D Biol. Crystallogr. 2006;62:1375–1381. doi: 10.1107/S0907444906032653. PubMed DOI

Carbonetti N.H. Contribution of pertussis toxin to the pathogenesis of pertussis disease. Pathog. Dis. 2015;73:ftv073. doi: 10.1093/femspd/ftv073. PubMed DOI PMC

Brown L., Elliott T. Efficient translation of the rpos sigma factor in salmonella typhimurium requires host factor i, an rna-binding protein encoded by the hfq gene. J. Bacteriol. 1996;178:3763–3770. doi: 10.1128/jb.178.13.3763-3770.1996. PubMed DOI PMC

Muffler A., Fischer D., Hengge-Aronis R. The rna-binding protein hf-i, known as a host factor for phage qbeta rna replication, is essential for rpos translation in escherichia coli. Genes Dev. 1996;10:1143–1151. doi: 10.1101/gad.10.9.1143. PubMed DOI

Ding Y., Davis B.M., Waldor M.K. Hfq is essential for vibrio cholerae virulence and downregulates sigma expression. Mol. Microbiol. 2004;53:345–354. doi: 10.1111/j.1365-2958.2004.04142.x. PubMed DOI

Figueroa-Bossi N., Lemire S., Maloriol D., Balbontin R., Casadesus J., Bossi L. Loss of hfq activates the sigmae-dependent envelope stress response in salmonella enterica. Mol. Microbiol. 2006;62:838–852. doi: 10.1111/j.1365-2958.2006.05413.x. PubMed DOI

Keidel K., Amman F., Bibova I., Drzmisek J., Benes V., Hot D., Vecerek B. Signal transduction-dependent small regulatory rna is involved in glutamate metabolism of the human pathogen bordetella pertussis. RNA. 2018;24:1530–1541. doi: 10.1261/rna.067306.118. PubMed DOI PMC

Amman F., D’Halluin A., Antoine R., Huot L., Bibova I., Keidel K., Slupek S., Bouquet P., Coutte L., Caboche S., et al. Primary transcriptome analysis reveals importance of is elements for the shaping of the transcriptional landscape of bordetella pertussis. RNA Biol. 2018;15:967–975. doi: 10.1080/15476286.2018.1462655. PubMed DOI PMC

Kasuga T., Nakase Y., Ukishima K., Takatsu K. Studies on haemophilis pertussis. Iii. Some properties of each phase of h. Pertussis. Kitasato Arch. Exp. Med. 1954;27:37–47. PubMed

Stainer D.W., Scholte M.J. A simple chemically defined medium for the production of phase i bordetella pertussis. J. Gen. Microbiol. 1970;63:211–220. doi: 10.1099/00221287-63-2-211. PubMed DOI

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Hoffmann S., Otto C., Kurtz S., Sharma C.M., Khaitovich P., Vogel J., Stadler P.F., Hackermuller J. Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput. Biol. 2009;5:e1000502. doi: 10.1371/journal.pcbi.1000502. PubMed DOI PMC

Anders S., Pyl P.T., Huber W. Htseq—A python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169. doi: 10.1093/bioinformatics/btu638. PubMed DOI PMC

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for rna-seq data with deseq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Benjamini Y., Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Masuda T., Tomita M., Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res. 2008;7:731–740. doi: 10.1021/pr700658q. PubMed DOI

Hebert A.S., Richards A.L., Bailey D.J., Ulbrich A., Coughlin E.E., Westphall M.S., Coon J.J. The one hour yeast proteome. Mol. Cell Proteom. 2014;13:339–347. doi: 10.1074/mcp.M113.034769. PubMed DOI PMC

Cox J., Mann M. Maxquant enables high peptide identification rates, individualized p.P.B.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI

Cox J., Neuhauser N., Michalski A., Scheltema R.A., Olsen J.V., Mann M. Andromeda: A peptide search engine integrated into the maxquant environment. J. Proteome Res. 2011;10:1794–1805. doi: 10.1021/pr101065j. PubMed DOI

Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed maxlfq. Mol. Cell Proteom. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The pride database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC

Conesa A., Gotz S., Garcia-Gomez J.M., Terol J., Talon M., Robles M. Blast2go: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–3676. doi: 10.1093/bioinformatics/bti610. PubMed DOI

Supek F., Bosnjak M., Skunca N., Smuc T. Revigo summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6:e21800. doi: 10.1371/journal.pone.0021800. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace