Primary transcriptome analysis reveals importance of IS elements for the shaping of the transcriptional landscape of Bordetella pertussis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29683387
PubMed Central
PMC6161684
DOI
10.1080/15476286.2018.1462655
Knihovny.cz E-zdroje
- Klíčová slova
- bordetella pertussis, insertion sequence, transcriptome,
- MeSH
- 3' nepřekládaná oblast MeSH
- 5' nepřekládaná oblast MeSH
- bakteriální RNA genetika MeSH
- Bordetella pertussis genetika MeSH
- genetická transkripce * MeSH
- genom bakteriální genetika MeSH
- messenger RNA genetika MeSH
- nekódující RNA genetika MeSH
- počátek transkripce MeSH
- stanovení celkové genové exprese * MeSH
- transpozibilní elementy DNA genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3' nepřekládaná oblast MeSH
- 5' nepřekládaná oblast MeSH
- bakteriální RNA MeSH
- messenger RNA MeSH
- nekódující RNA MeSH
- transpozibilní elementy DNA MeSH
Bordetella pertussis is the causative agent of whooping cough, a respiratory disease still considered as a major public health threat and for which recent re-emergence has been observed. Constant reshuffling of Bordetella pertussis genome organization was observed during evolution. These rearrangements are essentially mediated by Insertion Sequences (IS), a mobile genetic elements present in more than 230 copies in the genome, which are supposed to be one of the driving forces enabling the pathogen to escape from vaccine-induced immunity. Here we use high-throughput sequencing approaches (RNA-seq and differential RNA-seq), to decipher Bordetella pertussis transcriptome characteristics and to evaluate the impact of IS elements on transcriptome architecture. Transcriptional organization was determined by identification of transcription start sites and revealed also a large variety of non-coding RNAs including sRNAs, leaderless mRNAs or long 3' and 5'UTR including seven riboswitches. Unusual topological organizations, such as overlapping 5'- or 3'-extremities between oppositely orientated mRNA were also unveiled. The pivotal role of IS elements in the transcriptome architecture and their effect on the transcription of neighboring genes was examined. This effect is mediated by the introduction of IS harbored promoters or by emergence of hybrid promoters. This study revealed that in addition to their impact on genome rearrangements, most of the IS also impact on the expression of their flanking genes. Furthermore, the transcripts produced by IS are strain-specific due to the strain to strain variation in IS copy number and genomic context.
Zobrazit více v PubMed
Crowcroft NS, Stein C, Duclos P, et al.. How best to estimate the global burden of pertussis? Lancet Infect Dis. 2003;3:413–418. PubMed
Paddock CD, Sanden GN, Cherry JD, et al.. Pathology and Pathogenesis of Fatal Bordetella pertussis Infection in Infants. Clin Infect Dis. 2008;47:328–338. PubMed
World Health Organization Pertussis vaccines: WHO position paper - August 2015. Weely Epidemiol Rec. 2015;90:433–460.
Sealey KL, Belcher T, Preston A. Bordetella pertussis epidemiology and evolution in the light of pertussis resurgence. Infect Genet Evol. 2016;40:136–143. PubMed
Kline JM, Lewis WD, Smith EA, et al.. Pertussis: a reemerging infection. Am Fam Physician. 2013;88:507–514. PubMed
Wadman M, You J. The vaccine wars. Science. (80-. ) 2017;356:364–365. PubMed
Witt MA, Katz PH, Witt DJ. Unexpectedly limited durability of immunity following acellular pertussis vaccination in preadolescents in a north American outbreak. Clin Infect Dis. 2012;54:1730–1735. PubMed
Smits K, Pottier G, Smet J, et al.. Different T cell memory in preadolescents after whole-cell or acellular pertussis vaccination. Vaccine. 2013;32:111–118. PubMed
Warfel JM, Edwards KM. Pertussis vaccines and the challenge of inducing durable immunity. Curr Opin Immunol. 2015;35:48–54. PubMed
Edwards KM, Berbers GAM. Immune responses to pertussis vaccines and disease. J Infect Dis. 2014;209:S10–S15. PubMed
Althouse BM, Scarpino S V. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC Med. 2015;13:146. PubMed PMC
Martin SW, Pawloski L, Williams M, et al.. Pertactin-negative Bordetella pertussis strains: evidence for a possible selective advantage. Clin Infect Dis. 2015;60:223–227. PubMed
Queenan AM, Cassiday PK, Evangelista A. Pertactin-Negative Variants of Bordetella pertussis in the United States. N Engl J Med. 2013;368:583–584. PubMed PMC
Otsuka N, Han H-J, Toyoizumi-Ajisaka H, et al.. Prevalence and genetic characterization of pertactin-deficient bordetella pertussis in Japan. Miyaji EN, editor. PLoS One. 2012;7:e31985. PubMed PMC
Williams MM, Sen K, Weigand MR, et al.. Bordetella pertussis strain lacking pertactin and Pertussis Toxin. Emerg Infect Dis. 2016;22:319–322. PubMed PMC
Parkhill J, Sebaihia M, Preston A, et al.. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet. 2003;35:32–40. PubMed
Park J, Zhang Y, Buboltz AM, et al.. Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogens. BMC Genomics. 2012;13:545. PubMed PMC
Cummings CA, Brinig MM, Lepp PW, et al.. Bordetella species are distinguished by patterns of substantial gene loss and host adaptation. J Bacteriol. 2004;186:1484–1492. PubMed PMC
Diavatopoulos DA, Cummings CA, Schouls LM, et al.. Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog. 2005;1:e45. PubMed PMC
Xu Y, Liu B, Gröndahl-Yli-Hannuksila K, et al.. Whole-genome sequencing reveals the effect of vaccination on the evolution of Bordetella pertussis. Sci Rep. 2015;5:12888. PubMed PMC
Siguier P, Gourbeyre E, Varani A, et al.. Everyman's guide to bacterial insertion sequences. Microbiol Spectr. 2015;3:MDNA3-0030-2014. PubMed
Chain PSG, Hu P, Malfatti SA, et al.. Complete genome sequence of Yersinia pestis strains Antiqua and Nepal516: evidence of gene reduction in an emerging pathogen. J Bacteriol. 2006;188:4453–4463. PubMed PMC
Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev. 2014;38:865–891. PubMed PMC
Depardieu F, Podglajen I, Leclercq R, et al.. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev. 2007;20:79–114. PubMed PMC
Humayun MZ, Zhang Z, Butcher AM, et al.. Hopping into a hot seat: Role of DNA structural features on IS5-mediated gene activation and inactivation under stress. Kalendar R, editor. PLoS One. 2017;12:e0180156. PubMed PMC
Safi H, Barnes PF, Lakey DL, et al.. IS6110 functions as a mobile, monocyte-activated promoter in Mycobacterium tuberculosis. Mol Microbiol. 2004;52:999–1012. PubMed
Schneider D, Lenski RE. Dynamics of insertion sequence elements during experimental evolution of bacteria. Res Microbiol. 2004;155:319–327. PubMed
Weigand MR, Peng Y, Loparev V, et al.. The history of Bordetella pertussis genome evolution includes structural rearrangement. Becker A, editor. J Bacteriol. 2017;199:e00806–16. PubMed PMC
Prentki P, Teter B, Chandler M, et al.. Functional promoters created by the insertion of transposable element IS1. J Mol Biol. 1986;191:383–393. PubMed
Wang A, Roth JR. Activation of silent genes by transposons Tn5 and Tn10. Genetics. 1988;120:875–885. PubMed PMC
DeShazer D, Wood GE, Friedman RL. Molecular characterization of catalase from Bordetella pertussis: identification of the katA promoter in an upstream insertion sequence. Mol Microbiol. 1994;14:123–130. PubMed
Han H-J, Kuwae A, Abe A, et al.. Differential expression of type III effector BteA protein due to IS481 insertion in Bordetella pertussis. Neyrolles O, editor. PLoS One. 2011;6:e17797. PubMed PMC
Antoine R, Locht C. Roles of the disulfide bond and the carboxy-terminal region of the S1 subunit in the assembly and biosynthesis of pertussis toxin. Infect Immun. 1990;58:1518–1526. PubMed PMC
Amman F, Wolfinger MT, Lorenz R, et al.. TSSAR: TSS annotation regime for dRNA-seq data. BMC Bioinformatics. 2014;15:89. PubMed PMC
Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings Int Conf Intell Syst Mol Biol. 1994;2:28–36. PubMed
Dambach M, Sandoval M, Updegrove TB, et al.. The Ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element. Mol Cell. 2015;57:1099–1109. PubMed PMC
Grundy FJ, Henkin TM. tRNA as a positive regulator of transcription antitermination in B. Subtilis. Cell. 1993;74:475–482. PubMed
Condon C, Putzer H, Grunberg-Manago M. Processing of the leader mRNA plays a major role in the induction of thrS expression following threonine starvation in Bacillus subtilis. Proc Natl Acad Sci U S A. 1996;93:6992–6997. PubMed PMC
Mclafferty MA, Harcus DR, Hewlett EL. Nucleotide sequence and characterization of a repetitive DNA element from the genome of bordetella pertussis with characteristics of an insertion sequence. Microbiology. 1988;134:2297–2306. PubMed
Ma C, Simons RW. The IS10 antisense RNA blocks ribosome binding at the transposase translation initiation site. EMBO J. 1990;9:1267–1274. PubMed PMC
Simons RW, Kleckner N. Translational control of IS10 transposition. Cell. 1983;34:683–691. PubMed
Boinett CJ, Harris SR, Langridge GC, et al.. Complete Genome Sequence of Bordetella pertussis D420. Genome Announc. 2015;3:e00657–15. PubMed PMC
Sharma CM, Hoffmann S, Darfeuille F, et al.. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature. 2010;464:250–255. PubMed
Stazic D, Voß B. The complexity of bacterial transcriptomes. J Biotechnol. 2016;232:69–78. PubMed
Shine J, Dalgarno L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974;71:1342–1346. PubMed PMC
Seo J-H, Hong JS-J, Kim D, et al.. Multiple-omic data analysis of Klebsiella pneumoniae MGH 78578 reveals its transcriptional architecture and regulatory features. BMC Genomics. 2012;13:679. PubMed PMC
Kroger C, Dillon SC, Cameron ADS, et al.. The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proc Natl Acad Sci. 2012;109:E1277–E1286. PubMed PMC
Cortes T, Schubert OT, Rose G, et al.. Genome-wide mapping of transcriptional start sites defines an extensive leaderless transcriptome in Mycobacterium tuberculosis. Cell Rep. 2013;5:1121–1131. PubMed PMC
Georg J, Hess WR. cis-Antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev. 2011;75:286–300. PubMed PMC
Wurtzel O, Sesto N, Mellin JR, et al.. Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Mol Syst Biol. 2012;8:583. PubMed PMC
Locht C, Antoine R, Jacob-Dubuisson F. Bordetella pertussis, molecular pathogenesis under multiple aspects. Curr Opin Microbiol. 2001;4:82–89. PubMed
Hot D, Antoine R, Renauld-Mongénie G, et al.. Differential modulation of Bordetella pertussis virulence genes as evidenced by DNA microarray analysis. Mol Genet Genomics. 2003;269:475–486. PubMed
Toledo-Arana A, Dussurget O, Nikitas G, et al.. The Listeria transcriptional landscape from saprophytism to virulence. Nature. 2009;459:950–956. PubMed
Ren G-X, Guo X-P, Sun Y-C. Regulatory 3′ Untranslated Regions of Bacterial mRNAs. Front Microbiol. 2017;8:1276. PubMed PMC
Lasa I, Toledo-Arana A, Gingeras TR. An effort to make sense of antisense transcription in bacteria. RNA Biol. 2012;9:1039–1044. PubMed PMC
Lasa I, Toledo-Arana A, Dobin A, et al.. Genome-wide antisense transcription drives mRNA processing in bacteria. Proc Natl Acad Sci U S A. 2011;108:20172–20177. PubMed PMC
Svensson SL, Sharma CM. Small RNAs in bacterial virulence and communication. Virulence Mech Bact Pathog Fifth Ed American Society of Microbiology. 2016;4:169–212. PubMed
Brinig MM, Cummings CA, Sanden GN, et al.. Significant gene order and expression differences in Bordetella pertussis despite limited gene content variation. J Bacteriol. 2006;188:2375–2382. PubMed PMC
Zaghloul L, Tang C, Chin HY, et al.. The distribution of insertion sequences in the genome of Shigella flexneri strain 2457T. FEMS Microbiol Lett. 2007;277:197–204. PubMed
Parkhill J, Wren BW, Thomson NR, et al.. Genome sequence of Yersinia pestis, the causative agent of plague. Nature. 2001;413:523–527. PubMed
Kalendar R, Lee D, Schulman AH. FastPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis. Methods Mol Biol. 2014;1116:271–302. PubMed
Altschul SF, Gish W, Miller W, et al.. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. PubMed
Hoffmann S, Otto C, Kurtz S, et al.. Fast mapping of short sequences with mismatches, insertions and deletions using index structures. Searls DB, editor. PLoS Comput Biol. 2009;5:e1000502. PubMed PMC
Fisher RA. Statistical Methods for Research Workers. Springer, New York, NY; 1992. p. 66–70. DOI:10.1007/978-1-4612-4380-9_6 DOI
Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.
Beauregard A, Smith E, Petrone B, et al.. Identification and characterization of small RNAs in Yersinia pestis. RNA Biol. 2013;10:397–405. PubMed PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. PubMed PMC
Levin JZ, Yassour M, Adiconis X, et al.. Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods. 2010;7:709–715. PubMed PMC
Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment
Comparative Integrated Omics Analysis of the Hfq Regulon in Bordetella pertussis
A Bordetella pertussis MgtC homolog plays a role in the intracellular survival