Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment

. 2023 Dec ; 12 (1) : e2146536.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36357372

Bordetella pertussis, the causative agent of whooping cough, is an extracellular, strictly human pathogen. However, it has been shown that B. pertussis cells can escape phagocytic killing and survive in macrophages upon internalization. Our time-resolved RNA-seq data suggest that B. pertussis efficiently adapts to the intramacrophage environment and responds to host bactericidal activities. We show that this adaptive response is multifaceted and, surprisingly, related to the BvgAS two-component system, a master regulator of virulence. Our results show that the expression of this regulatory circuit is downregulated upon internalization. Moreover, we demonstrate that the switch to the avirulent Bvg- phase augments a very complex process based on the adjustment of central and energy metabolism, cell wall reinforcement, maintenance of appropriate redox and metal homeostasis, and repair of damaged macromolecules. Nevertheless, not all observed effects could be simply attributed to the transition to Bvg- phase, suggesting that additional regulators are involved in the adaptation to the intramacrophage environment. Interestingly, a large number of genes required for the metabolism of sulphur were strongly modulated within macrophages. In particular, the mutant lacking two genes encoding cysteine dioxygenases displayed strongly attenuated cytotoxicity toward THP-1 cells. Collectively, our results suggest that intracellular B. pertussis cells have adopted the Bvg- mode to acclimate to the intramacrophage environment and respond to antimicrobial activities elicited by THP-1 cells. Therefore, we hypothesize that the avirulent phase represents an authentic phenotype of internalized B. pertussis cells.

Zobrazit více v PubMed

Mattoo S, Cherry JD.. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev. 2005 Apr;18(2):326–382. PubMed PMC

Black RE, Cousens S, Johnson HL, et al. . Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet. 2010 Jun 5;375(9730):1969–1987. PubMed

Belcher T, Dubois V, Rivera-Millot A, et al. . Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence. 2021 Dec;12(1):2608–2632. PubMed PMC

Higgs R, Higgins SC, Ross PJ, et al. . Immunity to the respiratory pathogen Bordetella pertussis. Mucosal Immunol. 2012 Sep;5(5):485–500. PubMed

de Gouw D, Diavatopoulos DA, Bootsma HJ, et al. . Pertussis: a matter of immune modulation. FEMS Microbiol Rev. 2011 May;35(3):441–474. PubMed

Novak J, Cerny O, Osickova A, et al. . Structure-Function relationships underlying the capacity of Bordetella adenylate cyclase toxin to disarm host phagocytes. Toxins (Basel). 2017 Sep 24;9(10):toxins9100300. PubMed PMC

Cotter PA, Jones AM.. Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol. 2003 Aug;11(8):367–373. PubMed

Merkel TJ, Stibitz S, Keith JM, et al. . Contribution of regulation by the bvg locus to respiratory infection of mice by Bordetella pertussis. Infect Immun. 1998 Sep;66(9):4367–4373. PubMed PMC

Moon K, Bonocora RP, Kim DD, et al. . The BvgAS regulon of Bordetella pertussis. MBio. 2017 Oct 10;8(5):e01526-17. PubMed PMC

de Tejada G M, Cotter PA, Heininger U, et al. . Neither the Bvg- phase nor the vrg6 locus of Bordetella pertussis is required for respiratory infection in mice. Infect Immun. 1998 Jun;66(6):2762–2768. PubMed PMC

Lenz DH, Weingart CL, Weiss AA.. Phagocytosed Bordetella pertussis fails to survive in human neutrophils. Infect Immun. 2000 Feb;68(2):956–959. PubMed PMC

Rodriguez ME, Hellwig SM, Hozbor DF, et al. . Fc receptor-mediated immunity against Bordetella pertussis. J Immunol. 2001 Dec 1;167(11):6545–6551. PubMed

Ishibashi Y, Claus S, Relman DA.. Bordetella pertussis filamentous hemagglutinin interacts with a leukocyte signal transduction complex and stimulates bacterial adherence to monocyte CR3 (CD11b/CD18). J Exp Med. 1994 Oct 1;180(4):1225–1233. PubMed PMC

Saukkonen K, Cabellos C, Burroughs M, et al. . Integrin-mediated localization of Bordetella pertussis within macrophages: role in pulmonary colonization. J Exp Med. 1991 May 1;173(5):1143–1149. PubMed PMC

Hazenbos WL, van den Berg BM, van Furth R.. Very late antigen-5 and complement receptor type 3 cooperatively mediate the interaction between Bordetella pertussis and human monocytes. J Immunol. 1993 Dec 1;151(11):6274–6282. PubMed

Friedman RL, Nordensson K, Wilson L, et al. . Uptake and intracellular survival of Bordetella pertussis in human macrophages. Infect Immun. 1992 Nov;60(11):4578–4585. PubMed PMC

Paddock CD, Sanden GN, Cherry JD, et al. . Pathology and pathogenesis of fatal Bordetella pertussis infection in infants. Clin Infect Dis. 2008 Aug 1;47(3):328–338. PubMed

Hellwig SM, Hazenbos WL, van de Winkel JG, et al. . Evidence for an intracellular niche for Bordetella pertussis in broncho-alveolar lavage cells of mice. FEMS Immunol Med Microbiol. 1999 Dec;26(3-4):203–207. PubMed

Vandebriel RJ, Hellwig SM, Vermeulen JP, et al. . Association of Bordetella pertussis with host immune cells in the mouse lung. Microb Pathog. 2003 Jul;35(1):19–29. PubMed

Lamberti YA, Hayes JA, Perez Vidakovics ML, et al. . Intracellular trafficking of Bordetella pertussis in human macrophages. Infect Immun. 2010 Mar;78(3):907–913. PubMed PMC

Lamberti Y, Cafiero JH, Surmann K, et al. . Proteome analysis of Bordetella pertussis isolated from human macrophages. J Proteomics. 2016 Mar 16;136:55–67. PubMed

Valdez HA, Oviedo JM, Gorgojo JP, et al. . Bordetella pertussis modulates human macrophage defense gene expression. Pathog Dis. 2016 Aug;74(6):ftw073. PubMed

Petrackova D, Farman MR, Amman F, et al. . Transcriptional profiling of human macrophages during infection with Bordetella pertussis. RNA Biol. 2020 May;17(5):731–742. PubMed PMC

Taylor-Mulneix DL, Bendor L, Linz B, et al. . Bordetella bronchiseptica exploits the complex life cycle of Dictyostelium discoideum as an amplifying transmission vector. PLoS Biol. 2017 Apr;15(4):e2000420. PubMed PMC

Gorgojo J, Harvill ET, Rodriguez ME.. Bordetella parapertussis survives inside human macrophages in lipid raft-enriched phagosomes. Infect Immun. 2014 Dec;82(12):5175–5184. PubMed PMC

Rivera I, Linz B, Dewan KK, et al. . Conservation of ancient genetic pathways for intracellular persistence among animal pathogenic Bordetellae. Front Microbiol. 2019;10:2839. PubMed PMC

Rivera I, Linz B, Harvill ET.. Evolution and conservation of Bordetella intracellular survival in eukaryotic host cells. Front Microbiol. 2020;11:557819. PubMed PMC

Banus S, Pennings J, Vandebriel R, et al. . Lung response to Bordetella pertussis infection in mice identified by gene-expression profiling. Immunogenetics. 2007 Jul;59(7):555–564. PubMed PMC

Raeven RH, Brummelman J, Pennings JL, et al. . Molecular signatures of the evolving immune response in mice following a Bordetella pertussis infection. PLoS One. 2014;9(8):e104548. PubMed PMC

van Beek LF, de Gouw D, Eleveld MJ, et al. . Adaptation of Bordetella pertussis to the respiratory tract. J Infect Dis. 2018 May 25;217(12):1987–1996. PubMed

Wong TY, Hall JM, Nowak ES, et al. . Analysis of the in vivo transcriptome of Bordetella pertussis during infection of mice. mSphere. 2019 Apr 17;4(2):e00154-19. PubMed PMC

Chanput W, Mes JJ, Wichers HJ.. THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol. 2014 Nov;23(1):37–45. PubMed

Stainer DW, Scholte MJ.. A simple chemically defined medium for the production of phase I Bordetella pertussis. J Gen Microbiol. 1970 Oct;63(2):211–220. PubMed

Bibova I, Skopova K, Masin J, et al. . The RNA chaperone Hfq is required for virulence of Bordetella pertussis. Infect Immun. 2013 Nov;81(11):4081–4090. PubMed PMC

Inatsuka CS, Xu Q, Vujkovic-Cvijin I, et al. . Pertactin is required for Bordetella species to resist neutrophil-mediated clearance. Infect Immun. 2010 Jul;78(7):2901–2909. PubMed PMC

Patro R, Duggal G, Love MI, et al. . Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017 Apr;14(4):417–419. PubMed PMC

Risso D, Ngai J, Speed TP, et al. . Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014 Sep;32(9):896–902. PubMed PMC

Robinson MD, McCarthy DJ, Smyth GK.. Edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010 Jan 1;26(1):139–140. PubMed PMC

Love MI, Huber W, Anders S.. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. PubMed PMC

Wickham H. Ggplot2: elegant graphics for data analysis. New York (NY: ): Springer; 2009.

Conesa A, Gotz S, Garcia-Gomez JM, et al. . Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005 Sep 15;21(18):3674–3676. PubMed

Benjamini Y, Hochberg Y.. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289–300.

Bibova I, Hot D, Keidel K, et al. . Transcriptional profiling of Bordetella pertussis reveals requirement of RNA chaperone Hfq for type III secretion system functionality. RNA Biol. 2015;12(2):175–185. PubMed PMC

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001 May 1;29(9):e45. PubMed PMC

Amman F, D'Halluin A, Antoine R, et al. . Primary transcriptome analysis reveals importance of IS elements for the shaping of the transcriptional landscape of Bordetella pertussis. RNA Biol. 2018 Apr 23;15(7):967–975. PubMed PMC

Grant RA, Filman DJ, Finkel SE, et al. . The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat Struct Biol. 1998 Apr;5(4):294–303. PubMed

Moon K, Sim M, Tai CH, et al. . Identification of BvgA-dependent and BvgA-independent small RNAs (sRNAs) in Bordetella pertussis using the prokaryotic sRNA prediction toolkit ANNOgesic. Microbiol Spectr. 2021 Oct 31;9(2):e0004421. PubMed PMC

Coutte L, Huot L, Antoine R, et al. . The multifaceted RisA regulon of Bordetella pertussis. Sci Rep. 2016 Sep 13;6:32774. PubMed PMC

Lamberti Y, Gorgojo J, Massillo C, et al. . Bordetella pertussis entry into respiratory epithelial cells and intracellular survival. Pathog Dis. 2013 Dec;69(3):194–204. PubMed

Lamberti Y, Surmann K.. The intracellular phase of extracellular respiratory tract bacterial pathogens and its role on pathogen-host interactions during infection. Curr Opin Infect Dis. 2021 Jun 1;34(3):197–205. PubMed

Nakayama T, Zhang-Akiyama QM.. pqiABC and yebST, putative mce operons of escherichia coli, encode transport pathways and contribute to membrane integrity. J Bacteriol. 2017 Jan 1;199(1):e00606-16. PubMed PMC

Brenot A, King KY, Janowiak B, et al. . Contribution of glutathione peroxidase to the virulence of Streptococcus pyogenes. Infect Immun. 2004 Jan;72(1):408–413. PubMed PMC

Guo L, Lim KB, Poduje CM, et al. . Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell. 1998 Oct 16;95(2):189–198. PubMed

Shah NR, Hancock RE, Fernandez RC.. Bordetella pertussis lipid A glucosamine modification confers resistance to cationic antimicrobial peptides and increases resistance to outer membrane perturbation. Antimicrob Agents Chemother. 2014 Aug;58(8):4931–4934. PubMed PMC

Mortuza R, Aung HL, Taiaroa G, et al. . Overexpression of a newly identified d-amino acid transaminase in mycobacterium smegmatis complements glutamate racemase deletion. Mol Microbiol. 2018 Jan;107(2):198–213. PubMed

Taneja NK, Ganguly T, Bakaletz LO, et al. . D-alanine modification of a protease-susceptible outer membrane component by the Bordetella pertussis dra locus promotes resistance to antimicrobial peptides and polymorphonuclear leukocyte-mediated killing. J Bacteriol. 2013 Nov;195(22):5102–5111. PubMed PMC

Guest RL, Wang J, Wong JL, et al. . A bacterial stress response regulates respiratory protein complexes To control envelope stress adaptation. J Bacteriol. 2017 Oct 15;199(20):e00433-17. PubMed PMC

Raivio TL, Silhavy TJ.. Transduction of envelope stress in Escherichia coli by the Cpx two-component system. J Bacteriol. 1997 Dec;179(24):7724–7733. PubMed PMC

van der Heijden J, Reynolds LA, Deng W, et al. . Salmonella rapidly regulates membrane permeability To survive oxidative stress. mBio. 2016 Aug 9;7(4):e01238-16. PubMed PMC

Cafiero JH, Lamberti YA, Surmann K, et al. . A Bordetella pertussis MgtC homolog plays a role in the intracellular survival. PLoS One. 2018;13(8):e0203204. PubMed PMC

Alix E, Blanc-Potard AB.. Mgtc: a key player in intramacrophage survival. Trends Microbiol. 2007 Jun;15(6):252–256. PubMed

Lee EJ, Pontes MH, Groisman EA.. A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium's own F1Fo ATP synthase. Cell. 2013 Jul 3;154(1):146–156. PubMed PMC

Ochrombel I, Ott L, Kramer R, et al. . Impact of improved potassium accumulation on pH homeostasis, membrane potential adjustment and survival of Corynebacterium glutamicum. Biochim Biophys Acta. 2011 Apr;1807(4):444–450. PubMed

Schnappinger D, Ehrt S, Voskuil MI, et al. . Transcriptional adaptation of mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med. 2003 Sep 1;198(5):693–704. PubMed PMC

McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ, et al. . Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature. 2000 Aug 17;406(6797):735–738. PubMed

Anaya-Sanchez A, Feng Y, Berude JC, et al. . Detoxification of methylglyoxal by the glyoxalase system is required for glutathione availability and virulence activation in Listeria monocytogenes. PLoS Pathog. 2021 Aug;17(8):e1009819. PubMed PMC

Antoine R, Huvent I, Chemlal K, et al. . The periplasmic binding protein of a tripartite tricarboxylate transporter is involved in signal transduction. J Mol Biol. 2005 Aug 26;351(4):799–809. PubMed

Huvent I, Belrhali H, Antoine R, et al. . Crystal structure of Bordetella pertussis BugD solute receptor unveils the basis of ligand binding in a new family of periplasmic binding proteins. J Mol Biol. 2006 Mar 3;356(4):1014–1026. PubMed

Antoine R, Jacob-Dubuisson F, Drobecq H, et al. . Overrepresentation of a gene family encoding extracytoplasmic solute receptors in Bordetella. J Bacteriol. 2003 Feb;185(4):1470–1474. PubMed PMC

Parkhill J, Sebaihia M, Preston A, et al. . Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet. 2003 Sep;35(1):32–40. PubMed

Park S, Imlay JA.. High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction. J Bacteriol. 2003 Mar;185(6):1942–1950. PubMed PMC

Deshpande AA, Bhatia M, Laxman S, et al. . Thiol trapping and metabolic redistribution of sulfur metabolites enable cells to overcome cysteine overload. Microb Cell. 2017 Mar 27;4(4):112–126. PubMed PMC

Dominy JE J, Simmons CR, Karplus PA, et al. . Identification and characterization of bacterial cysteine dioxygenases: a new route of cysteine degradation for eubacteria. J Bacteriol. 2006 Aug;188(15):5561–5569. PubMed PMC

Stipanuk MH, Dominy JE Jr., Lee JI, et al. . Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr. 2006 Jun;136(6 Suppl):1652S–1659S. PubMed

Hennicke F, Grumbt M, Lermann U, et al. . Factors supporting cysteine tolerance and sulfite production in Candida albicans. Eukaryot Cell. 2013 Apr;12(4):604–613. PubMed PMC

Brickman TJ, Hanawa T, Anderson MT, et al. . Differential expression of Bordetella pertussis iron transport system genes during infection. Mol Microbiol. 2008 Oct;70(1):3–14. PubMed PMC

Zhou D, Hardt WD, Galan JE.. Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island. Infect Immun. 1999 Apr;67(4):1974–1981. PubMed PMC

Kehl-Fie TE, Skaar EP.. Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol. 2010 Apr;14(2):218–224. PubMed PMC

Capek J, Prochazkova I, Matousek T, et al. . A unique reverse adaptation mechanism assists Bordetella pertussis in resistance to both scarcity and toxicity of manganese. mBio. 2021 Oct 26;12(5):e0190221. PubMed PMC

Porter JF, Wardlaw AC.. Long-term survival of Bordetella bronchiseptica in lakewater and in buffered saline without added nutrients. FEMS Microbiol Lett. 1993 Jun 1;110(1):33–36. PubMed

Trainor EA, Nicholson TL, Merkel TJ . Bordetella pertussis transmission. Pathog Dis. 2015 Nov 73;8, ftv068. PubMed PMC

Seydlova G, Beranova J, Bibova I, et al. . The extent of the temperature-induced membrane remodeling in two closely related Bordetella species reflects their adaptation to diverse environmental niches. J Biol Chem. 2017 May 12;292(19):8048–8058. PubMed PMC

Karataev GI, Sinyashina LN, Medkova AY, et al. . Insertional inactivation of virulence operon in population of persistent Bordetella pertussis bacteria. Genetika. 2016 Apr;52(4):422–430. PubMed

Novak J, Jurnecka D, Linhartova I, et al. . A mutation upstream of the rplN-rpsD ribosomal operon downregulates Bordetella pertussis virulence factor production without compromising bacterial survival within human macrophages. mSystems. 2020 Dec 8;5(6):e00612-20. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...