The extent of the temperature-induced membrane remodeling in two closely related Bordetella species reflects their adaptation to diverse environmental niches

. 2017 May 12 ; 292 (19) : 8048-8058. [epub] 20170327

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28348085
Odkazy

PubMed 28348085
PubMed Central PMC5427280
DOI 10.1074/jbc.m117.781559
PII: S0021-9258(20)41898-8
Knihovny.cz E-zdroje

Changes in environmental temperature represent one of the major stresses faced by microorganisms as they affect the function of the cytoplasmic membrane. In this study, we have analyzed the thermal adaptation in two closely related respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica Although B. pertussis represents a pathogen strictly adapted to the human body temperature, B. bronchiseptica causes infection in a broad range of animals and survives also outside of the host. We applied GC-MS to determine the fatty acids of both Bordetella species grown at different temperatures and analyzed the membrane fluidity by fluorescence anisotropy measurement. In parallel, we also monitored the effect of growth temperature changes on the expression and production of several virulence factors. In response to low temperatures, B. pertussis adapted its fatty acid composition and membrane fluidity to a considerably lesser extent when compared with B. bronchiseptica Remarkably, B. pertussis maintained the production of virulence factors at 24 °C, whereas B. bronchiseptica cells resumed the production only upon temperature upshift to 37 °C. This growth temperature-associated differential modulation of virulence factor production was linked to the phosphorylation state of transcriptional regulator BvgA. The observed differences in low-temperature adaptation between B. pertussis and B. bronchiseptica may result from selective adaptation of B. pertussis to the human host. We propose that the reduced plasticity of the B. pertussis membranes ensures sustained production of virulence factors at suboptimal temperatures and may play an important role in the transmission of the disease.

Zobrazit více v PubMed

Mansilla M. C., Cybulski L. E., Albanesi D., and de Mendoza D. (2004) Control of membrane lipid fluidity by molecular thermosensors. J. Bacteriol. 186, 6681–6688 PubMed PMC

de Mendoza D., Klages Ulrich A., and Cronan J. E. Jr. (1983) Thermal regulation of membrane fluidity in Escherichia coli. Effects of overproduction of β-ketoacyl-acyl carrier protein synthase I. J. Biol. Chem. 258, 2098–2101 PubMed

Sinensky M. (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 71, 522–525 PubMed PMC

Russell N. J. (1983) Adaptation to temperature in bacterial membranes. Biochem. Soc. Trans. 11, 333–335 PubMed

Cronan J. E. Jr., and Gelmann E. P. (1975) Physical properties of membrane lipids: biological relevance and regulation. Bacteriol. Rev. 39, 232–256 PubMed PMC

Fulco A. J. (1974) Metabolic alterations of fatty acids. Annu. Rev. Biochem. 43, 215–241 PubMed

Marr A. G., and Ingraham J. L. (1962) Effect of temperature on the composition of fatty acids in Escherichia coli. J. Bacteriol. 84, 1260–1267 PubMed PMC

Cronan J. E. Jr., and Gelmann E. P. (1973) An estimate of the minimum amount of unsaturated fatty acid required for growth of Escherichia coli. J. Biol. Chem. 248, 1188–1195 PubMed

Magnuson K., Jackowski S., Rock C. O., and Cronan J. E. Jr. (1993) Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol. Rev. 57, 522–542 PubMed PMC

Baldassare J. J., Rhinehart K. B., and Silbert D. F. (1976) Modification of membrane lipid: physical properties in relation to fatty acid structure. Biochemistry 15, 2986–2994 PubMed

Locht C. (1999) Molecular aspects of Bordetella pertussis pathogenesis. Int. Microbiol. 2, 137–144 PubMed

Mattoo S., and Cherry J. D. (2005) Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin. Microbiol. Rev. 18, 326–382 PubMed PMC

Moss J., Stanley S. J., Burns D. L., Hsia J. A., Yost D. A., Myers G. A., and Hewlett E. L. (1983) Activation by thiol of the latent NAD glycohydrolase and ADP-ribosyltransferase activities of Bordetella pertussis toxin (islet-activating protein). J. Biol. Chem. 258, 11879–11882 PubMed

Confer D. L., and Eaton J. W. (1982) Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science 217, 948–950 PubMed

Friedman R. L., Fiederlein R. L., Glasser L., and Galgiani J. N. (1987) Bordetella pertussis adenylate cyclase: effects of affinity-purified adenylate cyclase on human polymorphonuclear leukocyte functions. Infect. Immun. 55, 135–140 PubMed PMC

Glaser P., Sakamoto H., Bellalou J., Ullmann A., and Danchin A. (1988) Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. EMBO J. 7, 3997–4004 PubMed PMC

Pearson R. D., Symes P., Conboy M., Weiss A. A., and Hewlett E. L. (1987) Inhibition of monocyte oxidative responses by Bordetella pertussis adenylate cyclase toxin. J. Immunol. 139, 2749–2754 PubMed

Aricó B., Miller J. F., Roy C., Stibitz S., Monack D., Falkow S., Gross R., and Rappuoli R. (1989) Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc. Natl. Acad. Sci. U.S.A. 86, 6671–6675 PubMed PMC

Cotter P. A., and Jones A. M. (2003) Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol. 11, 367–373 PubMed

Uhl M. A., and Miller J. F. (1994) Autophosphorylation and phosphotransfer in the Bordetella pertussis BvgAS signal transduction cascade. Proc. Natl. Acad. Sci. U.S.A. 91, 1163–1167 PubMed PMC

Uhl M. A., and Miller J. F. (1996) Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBO J. 15, 1028–1036 PubMed PMC

Cotter P. A., and Miller J. F. (1997) A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation, and identifies a new class of Bvg-regulated antigens. Mol. Microbiol. 24, 671–685 PubMed

Lacey B. W. (1960) Antigenic modulation of Bordetella pertussis. J. Hyg. 58, 57–93 PubMed PMC

Melton A. R., and Weiss A. A. (1989) Environmental regulation of expression of virulence determinants in Bordetella pertussis. J. Bacteriol. 171, 6206–6212 PubMed PMC

Weiss A. A., and Falkow S. (1984) Genetic analysis of phase change in Bordetella pertussis. Infect. Immun. 43, 263–269 PubMed PMC

Melton A. R., and Weiss A. A. (1993) Characterization of environmental regulators of Bordetella pertussis. Infect. Immun. 61, 807–815 PubMed PMC

Porter J. F., Parton R., and Wardlaw A. C. (1991) Growth and survival of Bordetella bronchiseptica in natural waters and in buffered saline without added nutrients. Appl. Environ. Microbiol. 57, 1202–1206 PubMed PMC

Hamidou Soumana I., Linz B., and Harvill E. T. (2017) Environmental origin of the genus Bordetella. Front. Microbiol. 8, 28. PubMed PMC

Parkhill J., Sebaihia M., Preston A., Murphy L. D., Thomson N., Harris D. E., Holden M. T., Churcher C. M., Bentley S. D., Mungall K. L., Cerdeño-Tárraga A. M., Temple L., James K., Harris B., Quail M. A., et al. (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat. Genet. 35, 32–40 PubMed

Diavatopoulos D. A., Cummings C. A., Schouls L. M., Brinig M. M., Relman D. A., and Mooi F. R. (2005) Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog. 1, e45. PubMed PMC

Lam O., Wheeler J., and Tang C. M. (2014) Thermal control of virulence factors in bacteria: a hot topic. Virulence 5, 852–862 PubMed PMC

Lakowicz J. R., Prendergast F. G., and Hogen D. (1979) Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers. Quantitation of hindered depolarizing rotations. Biochemistry 18, 508–519 PubMed PMC

Bart M. J., van Gent M., van der Heide H. G., Boekhorst J., Hermans P., Parkhill J., and Mooi F. R. (2010) Comparative genomics of prevaccination and modern Bordetella pertussis strains. BMC Genomics 11, 627. PubMed PMC

Bart M. J., Zeddeman A., van der Heide H. G., Heuvelman K., van Gent M., and Mooi F. R. (2014) Complete genome sequences of Bordetella pertussis isolates B1917 and B1920, representing two predominant global lineages. Genome Announc. 2, e01301–14 PubMed PMC

Boulanger A., Chen Q., Hinton D. M., and Stibitz S. (2013) In vivo phosphorylation dynamics of the Bordetella pertussis virulence-controlling response regulator BvgA. Mol. Microbiol. 88, 156–172 PubMed PMC

Dupré E., Lesne E., Guérin J., Lensink M. F., Verger A., de Ruyck J., Brysbaert G., Vezin H., Locht C., Antoine R., and Jacob-Dubuisson F. (2015) Signal transduction by BvgS sensor-kinase: binding of modulator nicotinate affects conformation and dynamics of entire periplasmic moiety. J. Biol. Chem. 290, 26473. PubMed PMC

Manetti R., Aricò B., Rappuoli R., and Scarlato V. (1994) Mutations in the linker region of BvgS abolish response to environmental signals for the regulation of the virulence factors in Bordetella pertussis. Gene 150, 123–127 PubMed

Kawai Y., and Moribayashi A. (1982) Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid. J. Bacteriol. 151, 996–1005 PubMed PMC

Dowhan W. (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu. Rev. Biochem. 66, 199–232 PubMed

Silvius J. R., and McEhaney R. N. (1979) Effects of phospholipid acylchain structure on thermotropic phase properties. 2: Phosphatidylcholines with unsaturated or cyclopropane acyl chains. Chem. Phys. Lipids 25, 125–134

McGarrity J. T., and Armstrong J. B. (1981) Phase transition behaviour of artificial liposomes composed of phosphatidylcholines acylated with cyclopropane fatty acids. Biochim. Biophys. Acta 640, 544–548 PubMed

Cummings C. A., Brinig M. M., Lepp P. W., van de Pas S., and Relman D. A. (2004) Bordetella species are distinguished by patterns of substantial gene loss and host adaptation. J. Bacteriol. 186, 1484–1492 PubMed PMC

Chang Y. Y., and Cronan J. E. Jr. (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol. Microbiol. 33, 249–259 PubMed

Jungkind D. L., and Wood R. C. (1974) Physiological differences between cyclopropane fatty acid-deficient mutants and the parent strain of Streptococcus faecalis. Biochim. Biophys. Acta 337, 298–310 PubMed

Schneider B., Gross R., and Haas A. (2000) Phagosome acidification has opposite effects on intracellular survival of Bordetella pertussis and B. bronchiseptica. Infect. Immun. 68, 7039–7048 PubMed PMC

Prugnola A., Aricò B., Manetti R., Rappuoli R., and Scarlato V. (1995) Response of the bvg regulon of Bordetella pertussis to different temperatures and short-term temperature shifts. Microbiology 141, 2529–2534 PubMed

Martínez de Tejada G., Miller J. F., and Cotter P. A. (1996) Comparative analysis of the virulence control systems of Bordetella pertussis and Bordetella bronchiseptica. Mol. Microbiol. 22, 895–908 PubMed

Dupré E., Herrou J., Lensink M. F., Wintjens R., Vagin A., Lebedev A., Crosson S., Villeret V., Locht C., Antoine R., and Jacob-Dubuisson F. (2015) Virulence regulation with Venus flytrap domains: structure and function of the periplasmic moiety of the sensor-kinase BvgS. PLoS Pathog. 11, e1004700. PubMed PMC

Stainer D. W., and Scholte M. J. (1970) A simple chemically defined medium for the production of phase I Bordetella pertussis. J. Gen. Microbiol. 63, 211–220 PubMed

Ladant D. (1988) Interaction of Bordetella pertussis adenylate cyclase with calmodulin. Identification of two separated calmodulin-binding domains. J. Biol. Chem. 263, 2612–2618 PubMed

Bligh E. G., and Dyer W. J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 PubMed

Shinitzky M., and Barenholz Y. (1978) Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim. Biophys. Acta 515, 367–394 PubMed

Adler M., and Tritton T. R. (1988) Fluorescence depolarization measurements on oriented membranes. Biophys. J. 53, 989–1005 PubMed PMC

Lakowicz J. R., Gryczynski I., Gryczynski Z., and Dattelbaum J. D. (1999) Anisotropy-based sensing with reference fluorophores. Anal. Biochem. 267, 397–405 PubMed PMC

Glass S. L. (1970) Saponification reaction and the determination of water. Anal. Biochem. 37, 219–224 PubMed

Rouser G., Fkeischer S., and Yamamoto A. (1970) Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5, 494–496 PubMed

Bibova I., Skopova K., Masin J., Cerny O., Hot D., Sebo P., and Vecerek B. (2013) The RNA chaperone Hfq is required for virulence of Bordetella pertussis. Infect. Immun. 81, 4081–4090 PubMed PMC

Pfaffl M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace