The extent of the temperature-induced membrane remodeling in two closely related Bordetella species reflects their adaptation to diverse environmental niches
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28348085
PubMed Central
PMC5427280
DOI
10.1074/jbc.m117.781559
PII: S0021-9258(20)41898-8
Knihovny.cz E-zdroje
- Klíčová slova
- bacterial pathogenesis, bacterial signal transduction, fatty acid, host adaptation, membrane function, virulence factor,
- MeSH
- aklimatizace * MeSH
- anizotropie MeSH
- bakteriální proteiny metabolismus MeSH
- Bordetella bronchiseptica cytologie fyziologie MeSH
- Bordetella pertussis cytologie fyziologie MeSH
- buněčná membrána metabolismus MeSH
- cytoplazma metabolismus MeSH
- druhová specificita MeSH
- faktory virulence metabolismus MeSH
- fluorescenční spektrometrie MeSH
- fosforylace MeSH
- lidé MeSH
- mastné kyseliny chemie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- signální transdukce MeSH
- tělesná teplota MeSH
- teplota * MeSH
- transkripční faktory metabolismus MeSH
- virulence MeSH
- životní prostředí MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- BvgA protein, Bacteria MeSH Prohlížeč
- faktory virulence MeSH
- mastné kyseliny MeSH
- transkripční faktory MeSH
Changes in environmental temperature represent one of the major stresses faced by microorganisms as they affect the function of the cytoplasmic membrane. In this study, we have analyzed the thermal adaptation in two closely related respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica Although B. pertussis represents a pathogen strictly adapted to the human body temperature, B. bronchiseptica causes infection in a broad range of animals and survives also outside of the host. We applied GC-MS to determine the fatty acids of both Bordetella species grown at different temperatures and analyzed the membrane fluidity by fluorescence anisotropy measurement. In parallel, we also monitored the effect of growth temperature changes on the expression and production of several virulence factors. In response to low temperatures, B. pertussis adapted its fatty acid composition and membrane fluidity to a considerably lesser extent when compared with B. bronchiseptica Remarkably, B. pertussis maintained the production of virulence factors at 24 °C, whereas B. bronchiseptica cells resumed the production only upon temperature upshift to 37 °C. This growth temperature-associated differential modulation of virulence factor production was linked to the phosphorylation state of transcriptional regulator BvgA. The observed differences in low-temperature adaptation between B. pertussis and B. bronchiseptica may result from selective adaptation of B. pertussis to the human host. We propose that the reduced plasticity of the B. pertussis membranes ensures sustained production of virulence factors at suboptimal temperatures and may play an important role in the transmission of the disease.
Zobrazit více v PubMed
Mansilla M. C., Cybulski L. E., Albanesi D., and de Mendoza D. (2004) Control of membrane lipid fluidity by molecular thermosensors. J. Bacteriol. 186, 6681–6688 PubMed PMC
de Mendoza D., Klages Ulrich A., and Cronan J. E. Jr. (1983) Thermal regulation of membrane fluidity in PubMed
Sinensky M. (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in PubMed PMC
Russell N. J. (1983) Adaptation to temperature in bacterial membranes. Biochem. Soc. Trans. 11, 333–335 PubMed
Cronan J. E. Jr., and Gelmann E. P. (1975) Physical properties of membrane lipids: biological relevance and regulation. Bacteriol. Rev. 39, 232–256 PubMed PMC
Fulco A. J. (1974) Metabolic alterations of fatty acids. Annu. Rev. Biochem. 43, 215–241 PubMed
Marr A. G., and Ingraham J. L. (1962) Effect of temperature on the composition of fatty acids in PubMed PMC
Cronan J. E. Jr., and Gelmann E. P. (1973) An estimate of the minimum amount of unsaturated fatty acid required for growth of PubMed
Magnuson K., Jackowski S., Rock C. O., and Cronan J. E. Jr. (1993) Regulation of fatty acid biosynthesis in PubMed PMC
Baldassare J. J., Rhinehart K. B., and Silbert D. F. (1976) Modification of membrane lipid: physical properties in relation to fatty acid structure. Biochemistry 15, 2986–2994 PubMed
Locht C. (1999) Molecular aspects of PubMed
Mattoo S., and Cherry J. D. (2005) Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to PubMed PMC
Moss J., Stanley S. J., Burns D. L., Hsia J. A., Yost D. A., Myers G. A., and Hewlett E. L. (1983) Activation by thiol of the latent NAD glycohydrolase and ADP-ribosyltransferase activities of PubMed
Confer D. L., and Eaton J. W. (1982) Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science 217, 948–950 PubMed
Friedman R. L., Fiederlein R. L., Glasser L., and Galgiani J. N. (1987) PubMed PMC
Glaser P., Sakamoto H., Bellalou J., Ullmann A., and Danchin A. (1988) Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of PubMed PMC
Pearson R. D., Symes P., Conboy M., Weiss A. A., and Hewlett E. L. (1987) Inhibition of monocyte oxidative responses by PubMed
Aricó B., Miller J. F., Roy C., Stibitz S., Monack D., Falkow S., Gross R., and Rappuoli R. (1989) Sequences required for expression of PubMed PMC
Cotter P. A., and Jones A. M. (2003) Phosphorelay control of virulence gene expression in PubMed
Uhl M. A., and Miller J. F. (1994) Autophosphorylation and phosphotransfer in the PubMed PMC
Uhl M. A., and Miller J. F. (1996) Integration of multiple domains in a two-component sensor protein: the PubMed PMC
Cotter P. A., and Miller J. F. (1997) A mutation in the PubMed
Lacey B. W. (1960) Antigenic modulation of PubMed PMC
Melton A. R., and Weiss A. A. (1989) Environmental regulation of expression of virulence determinants in PubMed PMC
Weiss A. A., and Falkow S. (1984) Genetic analysis of phase change in PubMed PMC
Melton A. R., and Weiss A. A. (1993) Characterization of environmental regulators of PubMed PMC
Porter J. F., Parton R., and Wardlaw A. C. (1991) Growth and survival of PubMed PMC
Hamidou Soumana I., Linz B., and Harvill E. T. (2017) Environmental origin of the genus PubMed PMC
Parkhill J., Sebaihia M., Preston A., Murphy L. D., Thomson N., Harris D. E., Holden M. T., Churcher C. M., Bentley S. D., Mungall K. L., Cerdeño-Tárraga A. M., Temple L., James K., Harris B., Quail M. A., et al. (2003) Comparative analysis of the genome sequences of PubMed
Diavatopoulos D. A., Cummings C. A., Schouls L. M., Brinig M. M., Relman D. A., and Mooi F. R. (2005) PubMed PMC
Lam O., Wheeler J., and Tang C. M. (2014) Thermal control of virulence factors in bacteria: a hot topic. Virulence 5, 852–862 PubMed PMC
Lakowicz J. R., Prendergast F. G., and Hogen D. (1979) Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers. Quantitation of hindered depolarizing rotations. Biochemistry 18, 508–519 PubMed PMC
Bart M. J., van Gent M., van der Heide H. G., Boekhorst J., Hermans P., Parkhill J., and Mooi F. R. (2010) Comparative genomics of prevaccination and modern PubMed PMC
Bart M. J., Zeddeman A., van der Heide H. G., Heuvelman K., van Gent M., and Mooi F. R. (2014) Complete genome sequences of PubMed PMC
Boulanger A., Chen Q., Hinton D. M., and Stibitz S. (2013) I PubMed PMC
Dupré E., Lesne E., Guérin J., Lensink M. F., Verger A., de Ruyck J., Brysbaert G., Vezin H., Locht C., Antoine R., and Jacob-Dubuisson F. (2015) Signal transduction by BvgS sensor-kinase: binding of modulator nicotinate affects conformation and dynamics of entire periplasmic moiety. J. Biol. Chem. 290, 26473. PubMed PMC
Manetti R., Aricò B., Rappuoli R., and Scarlato V. (1994) Mutations in the linker region of BvgS abolish response to environmental signals for the regulation of the virulence factors in PubMed
Kawai Y., and Moribayashi A. (1982) Characteristic lipids of PubMed PMC
Dowhan W. (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu. Rev. Biochem. 66, 199–232 PubMed
Silvius J. R., and McEhaney R. N. (1979) Effects of phospholipid acylchain structure on thermotropic phase properties. 2: Phosphatidylcholines with unsaturated or cyclopropane acyl chains. Chem. Phys. Lipids 25, 125–134
McGarrity J. T., and Armstrong J. B. (1981) Phase transition behaviour of artificial liposomes composed of phosphatidylcholines acylated with cyclopropane fatty acids. Biochim. Biophys. Acta 640, 544–548 PubMed
Cummings C. A., Brinig M. M., Lepp P. W., van de Pas S., and Relman D. A. (2004) PubMed PMC
Chang Y. Y., and Cronan J. E. Jr. (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of PubMed
Jungkind D. L., and Wood R. C. (1974) Physiological differences between cyclopropane fatty acid-deficient mutants and the parent strain of PubMed
Schneider B., Gross R., and Haas A. (2000) Phagosome acidification has opposite effects on intracellular survival of PubMed PMC
Prugnola A., Aricò B., Manetti R., Rappuoli R., and Scarlato V. (1995) Response of the bvg regulon of PubMed
Martínez de Tejada G., Miller J. F., and Cotter P. A. (1996) Comparative analysis of the virulence control systems of PubMed
Dupré E., Herrou J., Lensink M. F., Wintjens R., Vagin A., Lebedev A., Crosson S., Villeret V., Locht C., Antoine R., and Jacob-Dubuisson F. (2015) Virulence regulation with Venus flytrap domains: structure and function of the periplasmic moiety of the sensor-kinase BvgS. PLoS Pathog. 11, e1004700. PubMed PMC
Stainer D. W., and Scholte M. J. (1970) A simple chemically defined medium for the production of phase I PubMed
Ladant D. (1988) Interaction of PubMed
Bligh E. G., and Dyer W. J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 PubMed
Shinitzky M., and Barenholz Y. (1978) Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim. Biophys. Acta 515, 367–394 PubMed
Adler M., and Tritton T. R. (1988) Fluorescence depolarization measurements on oriented membranes. Biophys. J. 53, 989–1005 PubMed PMC
Lakowicz J. R., Gryczynski I., Gryczynski Z., and Dattelbaum J. D. (1999) Anisotropy-based sensing with reference fluorophores. Anal. Biochem. 267, 397–405 PubMed PMC
Glass S. L. (1970) Saponification reaction and the determination of water. Anal. Biochem. 37, 219–224 PubMed
Rouser G., Fkeischer S., and Yamamoto A. (1970) Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5, 494–496 PubMed
Bibova I., Skopova K., Masin J., Cerny O., Hot D., Sebo P., and Vecerek B. (2013) The RNA chaperone Hfq is required for virulence of PubMed PMC
Pfaffl M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45. PubMed PMC
Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment