Mechanism of polypurine tract primer generation by HIV-1 reverse transcriptase

. 2018 Jan 05 ; 293 (1) : 191-202. [epub] 20171109

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid29122886

Grantová podpora
R01 GM065367 NIGMS NIH HHS - United States
Howard Hughes Medical Institute - United States

Odkazy

PubMed 29122886
PubMed Central PMC5766924
DOI 10.1074/jbc.m117.798256
PII: S0021-9258(20)31922-0
Knihovny.cz E-zdroje

HIV-1 reverse transcriptase (RT) possesses both DNA polymerase activity and RNase H activity that act in concert to convert single-stranded RNA of the viral genome to double-stranded DNA that is then integrated into the DNA of the infected cell. Reverse transcriptase-catalyzed reverse transcription critically relies on the proper generation of a polypurine tract (PPT) primer. However, the mechanism of PPT primer generation and the features of the PPT sequence that are critical for its recognition by HIV-1 RT remain unclear. Here, we used a chemical cross-linking method together with molecular dynamics simulations and single-molecule assays to study the mechanism of PPT primer generation. We found that the PPT was specifically and properly recognized within covalently tethered HIV-1 RT-nucleic acid complexes. These findings indicated that recognition of the PPT occurs within a stable catalytic complex after its formation. We found that this unique recognition is based on two complementary elements that rely on the PPT sequence: RNase H sequence preference and incompatibility of the poly(rA/dT) tract of the PPT with the nucleic acid conformation that is required for RNase H cleavage. The latter results from rigidity of the poly(rA/dT) tract and leads to base-pair slippage of this sequence upon deformation into a catalytically relevant geometry. In summary, our results reveal an unexpected mechanism of PPT primer generation based on specific dynamic properties of the poly(rA/dT) segment and help advance our understanding of the mechanisms in viral RNA reverse transcription.

Zobrazit více v PubMed

Telesnitsky A., and Goff S. P. (1997) Reverse transcriptase and the generation of retroviral DNA, in Retroviruses (Coffin J. M., Hughes S. H., and Varmus H. E., eds), pp. 121–160, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY PubMed

Le Grice S. F. J., and Nowotny M. (2014) Reverse transcriptases, in Nucleic Acid Polymerases (Murakami K., and Trakselis M. A., eds) pp. 189–214, Springer-Verlag, Berlin

Gopalakrishnan V., Peliska J. A., and Benkovic S. J. (1992) Human immunodeficiency virus type 1 reverse transcriptase: spatial and temporal relationship between the polymerase and RNase H activities. Proc. Natl. Acad. Sci. U.S.A. 89, 10763–10767 10.1073/pnas.89.22.10763 PubMed DOI PMC

Huang H., Chopra R., Verdine G. L., and Harrison S. C. (1998) Structure of a covalently trapped catalytic complex of HIV-I reverse transcriptase: implications for drug resistance. Science 282, 1669–1675 10.1126/science.282.5394.1669 PubMed DOI

Lapkouski M., Tian L., Miller J. T., Le Grice S. F., and Yang W. (2013) Complexes of HIV-1 RT, NNRTI and RNA/DNA hybrid reveal a structure compatible with RNA degradation. Nat. Struct. Mol. Biol. 20, 230–236 10.1038/nsmb.2485 PubMed DOI PMC

Das K., Martinez S. E., Bandwar R. P., and Arnold E. (2014) Structures of HIV-1 RT-RNA/DNA ternary complexes with dATP and nevirapine reveal conformational flexibility of RNA/DNA: insights into requirements for RNase H cleavage. Nucleic Acids Res. 42, 8125–8137 10.1093/nar/gku487 PubMed DOI PMC

Li A., Li J., and Johnson K. A. (2016) HIV-1 reverse transcriptase polymerase and RNase H active sites work simultaneously and independently. J. Biol. Chem. 291, 26566–26585 10.1074/jbc.M116.753160 PubMed DOI PMC

Figiel M., Krepl M., Poznanski J., Golab A., Šponer J., and Nowotny M. (2017) Coordination between the polymerase and RNase H activity of HIV-1 reverse transcriptase. Nucleic Acids Res. 45, 3341–3352 PubMed PMC

Marquet R., Isel C., Ehresmann C., and Ehresmann B. (1995) tRNAs as primer of reverse transcriptases. Biochimie 77, 113–124 10.1016/0300-9084(96)88114-4 PubMed DOI

Huber H. E., and Richardson C. C. (1990) Processing of the primer for plus strand DNA synthesis by human immunodeficiency virus 1 reverse transcriptase. J. Biol. Chem. 265, 10565–10573 PubMed

Rausch J. W., and Le Grice S. F. (2004) ‘Binding, bending and bonding’: polypurine tract-primed initiation of plus-strand DNA synthesis in human immunodeficiency virus. Int. J. Biochem. Cell Biol. 36, 1752–1766 10.1016/j.biocel.2004.02.016 PubMed DOI

Delelis O., Carayon K., Saïb A., Deprez E., and Mouscadet J. F. (2008) Integrase and integration: biochemical activities of HIV-1 integrase. Retrovirology 5, 114 10.1186/1742-4690-5-114 PubMed DOI PMC

Powell M. D., and Levin J. G. (1996) Sequence and structural determinants required for priming of plus-strand DNA synthesis by the human immunodeficiency virus type 1 polypurine tract. J. Virol. 70, 5288–5296 PubMed PMC

Palaniappan C., Kim J. K., Wisniewski M., Fay P. J., and Bambara R. A. (1998) Control of initiation of viral plus strand DNA synthesis by HIV reverse transcriptase. J. Biol. Chem. 273, 3808–3816 10.1074/jbc.273.7.3808 PubMed DOI

Fuentes G. M., Rodríguez-Rodríguez L., Fay P. J., and Bambara R. A. (1995) Use of an oligoribonucleotide containing the polypurine tract sequence as a primer by HIV reverse-transcriptase. J. Biol. Chem. 270, 28169–28176 10.1074/jbc.270.47.28169 PubMed DOI

Abbondanzieri E. A., Bokinsky G., Rausch J. W., Zhang J. X., Le Grice S. F., and Zhuang X. (2008) Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature 453, 184–189 10.1038/nature06941 PubMed DOI PMC

Pullen K. A., and Champoux J. J. (1990) Plus-strand origin for human immunodeficiency virus type-1—implications for integration. J. Virol. 64, 6274–6277 PubMed PMC

Yi-Brunozzi H. Y., Brinson R. G., Brabazon D. M., Lener D., Le Grice S. F., and Marino J. P. (2008) High-resolution NMR analysis of the conformations of native and base analog substituted retroviral and LTR-retrotransposon PPT primers. Chem. Biol. 15, 254–262 10.1016/j.chembiol.2008.01.012 PubMed DOI PMC

Zhan X., and Crouch R. J. (1997) The isolated RNase H domain of murine leukemia virus reverse transcriptase. Retention of activity with concomitant loss of specificity. J. Biol. Chem. 272, 22023–22029 10.1074/jbc.272.35.22023 PubMed DOI

Huang H., Harrison S. C., and Verdine G. L. (2000) Trapping of a catalytic HIV reverse transcriptase*template:primer complex through a disulfide bond. Chem. Biol. 7, 355–364 10.1016/S1074-5521(00)00113-7 PubMed DOI

Liu S., Abbondanzieri E. A., Rausch J. W., Le Grice S. F., and Zhuang X. (2008) Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates. Science 322, 1092–1097 10.1126/science.1163108 PubMed DOI PMC

Pullen K. A., Rattray A. J., and Champoux J. J. (1993) The sequence features important for plus strand priming by human immunodeficiency virus type 1 reverse transcriptase. J. Biol. Chem. 268, 6221–6227 PubMed

Schultz S. J., Zhang M., and Champoux J. J. (2010) Multiple nucleotide preferences determine cleavage-site recognition by the HIV-1 and M-MuLV RNases H. J. Mol. Biol. 397, 161–178 10.1016/j.jmb.2010.01.059 PubMed DOI PMC

Schultz S. J., Zhang M., and Champoux J. J. (2004) Recognition of internal cleavage sites by retroviral RNases H. J. Mol. Biol. 344, 635–652 10.1016/j.jmb.2004.09.081 PubMed DOI

Schultz S. J., Zhang M., and Champoux J. J. (2006) Sequence, distance, and accessibility are determinants of 5′-end-directed cleavages by retroviral RNases H. J. Biol. Chem. 281, 1943–1955 10.1074/jbc.M510504200 PubMed DOI PMC

Schultz S. J., Zhang M., and Champoux J. J. (2009) Preferred sequences within a defined cleavage window specify DNA 3′ end-directed cleavages by retroviral RNases H. J. Biol. Chem. 284, 32225–32238 10.1074/jbc.M109.043158 PubMed DOI PMC

Rausch J. W., and Le Grice S. F. (2007) Purine analog substitution of the HIV-1 polypurine tract primer defines regions controlling initiation of plus-strand DNA synthesis. Nucleic Acids Res. 35, 256–268 PubMed PMC

Vafabakhsh R., and Ha T. (2012) Extreme bendability of DNA less than 100 base pairs long revealed by single-molecule cyclization. Science 337, 1097–1101 10.1126/science.1224139 PubMed DOI PMC

Nowotny M., Gaidamakov S. A., Crouch R. J., and Yang W. (2005) Crystal structures of RNase H bound to an RNA/DNA hybrid: Substrate specificity and metal-dependent catalysis. Cell 121, 1005–1016 10.1016/j.cell.2005.04.024 PubMed DOI

Nowotny M., Gaidamakov S. A., Ghirlando R., Cerritelli S. M., Crouch R. J., and Yang W. (2007) Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription. Mol. Cell 28, 264–276 10.1016/j.molcel.2007.08.015 PubMed DOI

Rausch J. W., Qu J., Yi-Brunozzi H. Y., Kool E. T., and Le Grice S. F. (2003) Hydrolysis of RNA/DNA hybrids containing nonpolar pyrimidine isosteres defines regions essential for HIV type 1 polypurine tract selection. Proc. Natl. Acad. Sci. U.S.A. 100, 11279–11284 10.1073/pnas.1932546100 PubMed DOI PMC

Goljer I., Kumar S., and Bolton P. H. (1995) Refined solution structure of a DNA heteroduplex containing an aldehydic abasic site. J. Biol. Chem. 270, 22980–22987 10.1074/jbc.270.39.22980 PubMed DOI

Coppel Y., Berthet N., Coulombeau C., Coulombeau C., Garcia J., and Lhomme J. (1997) Solution conformation of an abasic DNA undecamer duplex d(CGCACXCACGC) x d(GCGTGTGTGCG): the unpaired thymine stacks inside the helix. Biochemistry 36, 4817–4830 10.1021/bi962677y PubMed DOI

Kvaratskhelia M., Budihas S. R., and Le Grice S. F. (2002) Pre-existing distortions in nucleic acid structure aid polypurine tract selection by HIV-1 reverse transcriptase. J. Biol. Chem. 277, 16689–16696 10.1074/jbc.M109914200 PubMed DOI

Kati W. M., Johnson K. A., Jerva L. F., and Anderson K. S. (1992) Mechanism and fidelity of HIV reverse transcriptase. J. Biol. Chem. 267, 25988–25997 PubMed

Schultz S. J., and Champoux J. J. (2008) RNase H activity: structure, specificity, and function in reverse transcription. Virus Res. 134, 86–103 10.1016/j.virusres.2007.12.007 PubMed DOI PMC

Han G. W., Kopka M. L., Cascio D., Grzeskowiak K., and Dickerson R. E. (1997) Structure of a DNA analog of the primer for HIV-1 RT second strand synthesis. J. Mol. Biol. 269, 811–826 10.1006/jmbi.1997.1085 PubMed DOI

Sarafianos S. G., Das K., Tantillo C., Clark A. D. Jr, Ding J., Whitcomb J. M., Boyer P. L., Hughes S. H., and Arnold E. (2001) Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO J. 20, 1449–1461 10.1093/emboj/20.6.1449 PubMed DOI PMC

Yi-Brunozzi H. Y., and Le Grice S. F. (2005) Investigating HIV-1 polypurine tract geometry via targeted insertion of abasic lesions in the (−)-DNA template and (+)-RNA primer. J. Biol. Chem. 280, 20154–20162 10.1074/jbc.M411228200 PubMed DOI

Dash C., Yi-Brunozzi H. Y., and Le Grice S. F. (2004) Two modes of HIV-1 polypurine tract cleavage are affected by introducing locked nucleic acid analogs into the (−) DNA template. J. Biol. Chem. 279, 37095–37102 10.1074/jbc.M403306200 PubMed DOI

Dash C., Rausch J. W., and Le Grice S. F. (2004) Using pyrrolo-deoxycytosine to probe RNA/DNA hybrids containing the human immunodeficiency virus type-1 3′ polypurine tract. Nucleic Acids Res. 32, 1539–1547 10.1093/nar/gkh307 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace